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List of Symbols 
 

Arabic Symbols 

Symbol Description 

𝑎𝑎 Lattice parameter, Lattice constant 

𝑎𝑎𝚤𝚤���⃑  Acceleration 

𝐴𝐴 Constant number 

𝐴𝐴1 Strength (1, refer to acoustic short-range phonons) 

𝐴𝐴2 Strength (2, refer to acoustic long-range phonons) 

𝐵𝐵𝑇𝑇 Isothermal bulk modulus 

𝐶𝐶1 Partial heat capacity of acoustic short-range phonon modes 

𝐶𝐶2 Partial heat capacity of acoustic long-range phonon modes 

C11, C12 and C44 Elastic constants 

𝐶𝐶𝐷𝐷 Debye heat capacity 

𝐶𝐶DP Classical lattice heat capacity known as Dulong and Petit value 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Tensor of elastic constants 

𝐶𝐶𝐽𝐽𝐽𝐽1  Contribution into the HCACF decay due to the acoustic short-

range phonon modes  

𝐶𝐶𝐽𝐽𝐽𝐽2  Contribution into the HCACF decay due to the acoustic long-

range phonon modes  

𝐶𝐶𝑃𝑃 Heat capacity at constant pressure 

𝐶𝐶𝑉𝑉 Heat capacity at constant volume 

𝐷𝐷(𝜔𝜔) Density of state 

𝑒𝑒𝑖𝑖 

𝐸𝐸 

Total energy of the i-th atom 

Total energy 

𝑓𝑓1 Fraction of the acoustic short-range phonon modes 

𝑓𝑓2 Fraction of the acoustic long-range phonon modes 

𝐅𝐅𝑖𝑖 Force 

𝐹𝐹𝛼𝛼 The embedding function for type 𝛼𝛼 

𝒈𝒈 Reciprocal lattice vector 

𝑔𝑔(𝜔𝜔,𝑇𝑇) Density of phonon modes 

𝑔𝑔1(𝜔𝜔,𝑇𝑇) Density of the acoustic short-range phonon modes 
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𝑔𝑔2(𝜔𝜔,𝑇𝑇) Density of the acoustic long-range phonon modes 

𝑱𝑱 Microscopic heat current vector per unit volume 

𝑱𝑱1 Heat current due to acoustic short-range phonon modes 

𝑱𝑱2 Heat current due to acoustic long-range phonon modes 

𝑘𝑘 Thermal conductivity  

𝑘𝑘1 Thermal conductivity (1, refer to acoustic short-range phonons) 

𝑘𝑘2 Thermal conductivity (2, refer to acoustic long-range phonons) 

𝑘𝑘B Boltzmann constant 

𝑘𝑘𝑒𝑒𝑒𝑒 Electron thermal conductivity 

𝑘𝑘𝑒𝑒𝑒𝑒−𝑝𝑝ℎ Electronic thermal conductivity when limited by phonon 

scattering 

𝑘𝑘𝑝𝑝ℎ Phonon thermal conductivity 

𝑘𝑘𝑝𝑝ℎ−𝑒𝑒𝑒𝑒 Phonon thermal conductivity when limited by electron scattering 

𝑘𝑘𝑝𝑝ℎ−𝑝𝑝ℎ Lattice thermal conductivity determined by the phonon-phonon 

scattering processes 

𝐿𝐿0 Lorenz Constant 

𝑚𝑚 Mass of atom 

𝑚𝑚𝑖𝑖 Mass of atom i 

𝑛𝑛 Number of atoms in the specimen, Phonon distribution 

𝑛𝑛𝑒𝑒 Free electron per atom 

𝑛𝑛0 Equilibrium phonon distribution 

𝑛𝑛0′  Displaced phonon distribution 

𝑁𝑁 Number of atoms 

𝑁𝑁1 Acoustic short-range phonon modes 

𝑁𝑁2 Acoustic long-range phonon modes 

𝑃𝑃 Pressure 

𝑝𝑝1 and 𝑝𝑝2 Probabilities 

𝐩𝐩𝑖𝑖 Momentum vectors 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 Pressure 

𝒒𝒒 Wave vector 

𝑄𝑄 Heat flux 

𝒓𝒓𝑖𝑖 Position vectors, radius-vector of the i-th atom 



18 
 

𝑟𝑟𝑖𝑖𝑖𝑖 Distance between the centres of the two particles 

𝑟𝑟𝑖𝑖,𝑗𝑗 Distance between atom i and j 

𝑅𝑅(𝜔𝜔) Thermal resistance 

𝑅𝑅1(𝜔𝜔) Thermal resistance of the acoustic short-range phonon modes 

𝑅𝑅2(𝜔𝜔) Thermal resistance of the acoustic long-range phonon modes 

𝑠𝑠 Speed of sound 

𝑠𝑠𝒆𝒆,𝑏𝑏 Speed of sound in the direction of 𝒆𝒆 = 𝒒𝒒
|𝒒𝒒| for polarization 𝑏𝑏 

𝑠𝑠𝑙𝑙,𝛿𝛿 Phonon speed of the longitudinal mode at given direction 

𝑠𝑠𝑝𝑝ℎ Phonon velocity 

𝑠𝑠𝑡𝑡1,𝛿𝛿  and 𝑠𝑠𝑡𝑡2,𝛿𝛿 Phonon speeds of the two transvers mode at given direction 

𝑆𝑆 Seebeck coefficient 

𝑆𝑆𝐽𝐽(𝜔𝜔) The power spectrum of the equilibrium fluctuations of the total 

heat flux 𝐽𝐽(𝑡𝑡) 

𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Spectrum of power dissipation 

𝑆𝑆𝑋𝑋(𝜔𝜔) The power spectrum of the spontaneously fluctuating 

thermodynamic force 𝑋𝑋(𝑡𝑡) 

𝑡𝑡 Time 

𝑇𝑇 Absolute temperature 

𝑇𝑇𝐷𝐷 Debye temperature 

𝑇𝑇𝑚𝑚 Melting temperature 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 Desired temperature 

𝒖𝒖 Drift velocity in the direction of the heat flow 

𝑈𝑈 Thermal energy 

𝑈𝑈𝑖𝑖𝑖𝑖 Lennard-Jones potential 

𝑉𝑉 Volume of the simulation cell 

𝑣𝑣𝑖𝑖 Absolute value of the velocity vector of the atom  

𝑣𝑣𝑖𝑖𝑖𝑖   or  𝑣𝑣𝑖𝑖𝑖𝑖 Components of the vectors 𝒗𝒗𝑖𝑖 

𝑣𝑣𝑔𝑔 Phonon velocity 

𝑣𝑣𝐺𝐺  Group velocity 

𝑣𝑣𝑃𝑃 Phonon phase velocity 

𝑥𝑥𝑖𝑖𝑖𝑖 Components of the vectors 𝒓𝒓𝑖𝑖 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖   or  𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 Components of the vectors 𝒓𝒓𝑖𝑖𝑖𝑖 
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𝑿𝑿 Thermodynamic force 

𝑌𝑌(𝜔𝜔) Thermal reactance 

𝑌𝑌1(𝜔𝜔) Thermal reactance of the acoustic short-range phonon modes 

𝑌𝑌2(𝜔𝜔) Thermal reactance of the acoustic long-range phonon modes 

𝑍𝑍(𝜔𝜔) Thermal Impedance 

𝑍𝑍1(𝜔𝜔) Thermal impedance of the acoustic short-range phonon modes 

𝑍𝑍2(𝜔𝜔) Thermal impedance of the acoustic long-range phonon modes 
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Greek Symbols 

Symbol Description 

𝛼𝛼Ω Parameters of atomic volume quadratic equation 

𝛼𝛼𝑃𝑃 Coefficient of thermal expansion 

𝛼𝛼𝑉𝑉 Coefficient of thermal expansion 

𝛼𝛼 and 𝛽𝛽 The element types of atoms i and j 

𝛽𝛽Ω Parameters of atomic volume quadratic equation 

𝛽𝛽𝑇𝑇 Isothermal compressibility 

𝛿𝛿 Given direction 

𝛿𝛿2 Dimensionless factor which should be less than unity 

𝛿𝛿(𝜔𝜔 + 𝜔𝜔′) Dirac delta function 

𝛬𝛬 Mean free path 

∇𝑇𝑇 Temperature gradient 

𝜀𝜀 Depth of the potential well 

𝜀𝜀𝑥𝑥𝑥𝑥 and 𝜀𝜀𝑦𝑦𝑦𝑦 Compression strain 

𝜀𝜀𝑥𝑥𝑥𝑥 Shear strain 

𝜖𝜖 Time history of parameter 

𝜑𝜑1 Contribution of the acoustic short-range phonon modes into the 

lattice heat capacity 

𝜑𝜑2 Contribution of the acoustic long-range phonon modes into the 

lattice heat capacity 

∅𝛼𝛼𝛼𝛼 Pair-wise potential function 

𝛾𝛾 Gruneisen parameter 

ℏ Reduce Plank constant 

𝜆𝜆𝐷𝐷 Shortest wavelength 

𝜇𝜇 Phonon mobility 

𝜂𝜂 Damping parameter 

Ω Atomic volume 

Ω0 Parameters of atomic volume quadratic equation 

𝜌𝜌 Mass density 

𝜌̅𝜌𝑖𝑖 Host electron density 

http://en.wikipedia.org/wiki/Potential_well
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𝜌𝜌𝛽𝛽 The electron density from one atom of type 𝛽𝛽 at location of the 

other atom 

𝜌𝜌𝜇𝜇𝑗𝑗�𝑟𝑟𝑖𝑖𝑖𝑖� Electron density induced by an atom j at the location of atom i 

𝜎𝜎 Finite distance, Entropy 

𝜎𝜎𝑒𝑒𝑒𝑒 Electrical conductivity 

𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖
(𝑝𝑝)  Potential energy contribution to the components of the stress 

tensor of atom i 

𝜎𝜎𝑥𝑥𝑥𝑥 and 𝜎𝜎𝑦𝑦𝑦𝑦 Compression stress 

𝜎𝜎𝑥𝑥𝑥𝑥 Shear stress 

𝜏𝜏 Relaxation time 

𝜏𝜏1 Time constant (1, refer to acoustic short-range phonons) 

𝜏𝜏2 Time constant (2, refer to acoustic long-range phonons) 

𝜏𝜏1′  Average relaxation time 

𝜏𝜏2N Relaxation time for a given acoustic long range phonon mode to 

restore the same perturbed phonon distribution 𝑛𝑛(𝒒𝒒, 𝑏𝑏,𝑇𝑇) to the 

displaced distribution 𝑛𝑛0′ (𝒒𝒒, 𝑏𝑏,𝒖𝒖,𝑇𝑇) via N-processes 

𝜏𝜏1U Relaxation time for a given acoustic short-range phonon mode to 

restore a perturbed phonon distribution 𝑛𝑛(𝒒𝒒, 𝑏𝑏,𝑇𝑇) to the 

equilibrium distribution 𝑛𝑛0(𝒒𝒒, 𝑏𝑏,𝑇𝑇) via U-processes 

𝜏𝜏2U Relaxation time for a given acoustic long-range phonon mode to 

restore the displaced distribution 𝑛𝑛0′ (𝒒𝒒, 𝑏𝑏,𝒖𝒖,𝑇𝑇) to the equilibrium 

distribution 𝑛𝑛0(𝒒𝒒, 𝑏𝑏,𝑇𝑇) via U-processes 

𝜏𝜏c Characteristic time constant 

𝜏𝜏𝐶𝐶  Combined relaxation time 

𝜏𝜏𝑀𝑀  Effective relaxation time for a given phonon mode 

𝜏𝜏𝑁𝑁  Mode-dependent relaxation time for N-processes 

𝜏𝜏𝑃𝑃 Barostate time constant 

𝜏𝜏𝑇𝑇  Reservoir-system time constant 

𝜏𝜏𝑈𝑈  Mode-dependent relaxation time for U-processes 

𝜏𝜏∗ Phonon relaxation time 

𝒗𝒗𝑖𝑖 

𝜔𝜔 

Velocity vector of the i-th atom 

Angular frequency 



22 
 

𝜔𝜔1 Low-frequency phonon mode 

𝜔𝜔2 and 𝜔𝜔3 High-frequency phonon mode 

𝜔𝜔(𝒒𝒒, 𝑏𝑏) Angular frequency which is a function of the phonon wave vector 

𝒒𝒒 and the phonon polarization 𝑏𝑏 

𝜔𝜔c Characteristic angular frequency 

𝜔𝜔𝐷𝐷 Debye frequency 

𝜔𝜔𝑑𝑑1 Maximum location of 𝑆𝑆𝐽𝐽1(𝜔𝜔), Damped resonance frequency 

𝜔𝜔𝑑𝑑2 Maximum location of 𝑆𝑆𝐽𝐽2(𝜔𝜔)  

𝜔𝜔𝑅𝑅 Maximum location of power spectrum 

𝜔𝜔01 Undamped resonance frequency 

𝜔𝜔01
′  Minimum of |𝑍𝑍1(𝜔𝜔)|, where 𝑌𝑌1(𝜔𝜔) passes via zero value 

𝜔𝜔02 Minimum location of impedance |𝑍𝑍2(𝜔𝜔)|of the acoustic long rang 

phonon modes 
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Abbreviations 

Abbreviation Description 

Ag Silver 

Al Aluminium 

Ar Argon 

b.c.c. Body-centred cubic 

Cu Copper 

EAM Embedded-atom method 

f.c.c. Face-centred cubic 

Ge Germanium 

HCACF Heat current autocorrelation function 

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator 

MD Molecular dynamics 

N-processes Normal processes 

Ni Nickel 

NiEAM1  f.c.c. Ni that describe by EAM interatomic potential developed 

by Mishin et al, (published in 1999) 

NiEAM2 f.c.c. Ni that describe by EAM interatomic potential developed 

by Mishin et al, (published in 2004) 

NPT  Isobaric-isothermal ensemble 

NVE Micro canonical ensemble 

NVT Canonical ensemble 

ps picosecond 

sc Simple cubic 

Si Silicon 

SiGe Silicon germanium 

THz Terahertz 

U-processes Umklapp processes 
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Abstract 
 

In this study, the phonon dynamics and lattice thermal conductivity of f.c.c. Copper (Cu), 

Aluminium (Al), Nickel (Ni) and Silver (Ag), as case studies, are investigated over a 

wide range of temperatures in detail. Calculations are performed within the framework 

of equilibrium molecular dynamics simulations in conjunction with the Green-Kubo 

formalism. To describe the interatomic interaction, the most reliable embedded-atom 

method potentials are used. It should be noted that for Ni two different embedded-atom 

method interatomic potentials are considered. Hereafter, the first potential is referred to 

as NiEAM1 (published in 1999) while the second potential is referred to as NiEAM2 

(published in 2004). In all the models considered, a two-stage decay in the heat current 

autocorrelation function was observed. After the first stage of decay, the heat current 

autocorrelation function showed a peak in the low temperature range. The intensity of 

the peak decreased as the temperature increased. Furthermore, it transformed to a 

shoulder which diminished at high temperatures. It was revealed that the lattice thermal 

conductivity of a monatomic lattice can be decomposed into two contributions due to 

the acoustic short- and long-range phonon modes. These two contributions can be 

presented in the form of simple kinetic formulas consisting of the products of the heat 

capacity, the square of the average phonon velocity and the average relaxation time of 

the acoustic short- and long-range phonon modes, respectively. In addition, this analysis 

allowed for numerical evaluations of all these quantities, in a self-consistent manner, 

from the heat current autocorrelation function. In particular, it was shown that the 

average phonon velocities of the acoustic short- and long-range phonon modes must be 

equal to each other and can be expressed via second-order fluctuations of the heat current 

vector.  

This was followed by an extensive consideration of the spectral representation of the 

analytical model for the heat current autocorrelation function. This has the potential to 

be used to efficiently decode the generic information on the lattice thermal conductivity 

and phonon dynamics from spectroscopic measurements, with no gradients imposed on 

the studied crystal, if a proper resolution of the frequency range of approximately 1 – 20 

THz is accessible. In this research, the contribution to the lattice thermal conductivity 

determined by the phonon-electron scattering processes was intentionally ignored, and 
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only the contribution due to the phonon-phonon scattering processes was considered. 

However, during comparisons of the data with the experiments, an estimation of the first 

contribution was made. Moreover, it is also of great interest, for practical applications, 

to have simple scaling relations between the lattice thermal conductivity and the other 

lattice properties readily accessible in experiments, such as the thermal expansion and 

elasticity. In this context, the scaling relations of the lattice thermal conductivity with 

the coefficient of the thermal expansion and the bulk modulus were estimated. 
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Chapter 1: Introduction 
 

1.1 Motivation and Problem Statement 
 

Over the past two decades, thermal conductivity predictions have only been made for a 

very limited range of materials. For example, McGaughey and Kaviany used molecular 

dynamics (MD) simulations combined with the Lennard-Jones pair potential to define 

the phonon transport and to predict the thermal conductivity of f.c.c. Ar [1, 2]. Also, 

Kaburaki et al. calculated the thermal conductivity of f.c.c. Ar over a wide temperature 

range, showing that the MD method combined with the Lennard-Jones pair potential has 

a good accuracy for the prediction of the thermal conductivity of argon [3]. Both the 

mentioned groups used equilibrium MD along with the Green-Kubo method. He et al. 

[4] compared the performance of equilibrium and non-equilibrium molecular dynamics 

(EMD and NEMD) and the Boltzmann transport equation for bulk crystalline Si0.5Ge0.5 

alloys at room temperature. They found that MD simulations can provide a valuable 

insight into the thermal properties of materials [4].  

The appropriate candidates for this research are Cu, Ni, Al and Ag as:  

(i) Very high-quality embedded-atom method (EAM) potentials [5-8] are 

available for these elements.  

(ii) The calculated phonon thermal conductivity can be compared to the 

previous non-equilibrium MD calculations [9] of the phonon thermal 

conductivity of f.c.c. Cu, as a case study, under a large temperature 

gradient with an older EAM potential [10].  

(iii) The results obtained for f.c.c. Cu, Ni, Al and Ag can be compared with 

each other to estimate the scaling relations between the lattice thermal 

conductivity and the other lattice properties. 

(iv) The results can be compared with the experimental data on the thermal 

conductivity of the above mentioned metals [11]. 

Thus, the motivation for the present research was to investigate the temperature 

dependency of the phonon thermal conductivity and the phonon dynamics of the 

elemental f.c.c. crystals, using Cu, Ni, Al and Ag models as case studies. The Green-

Kubo formalism was applied to examine, in greater detail, the heat current 
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autocorrelation function (HCACF) and to gain an important insight into the phonon 

scattering processes. The results from this research are then compared with previous 

related theoretical and experimental studies, with the goal of bridging the experiment 

and the theory [12]. 

 

1.2 Research Objectives and Research Significance 
 

In this work, the thermal transport properties of crystal Cu, Ni, Al and Ag are considered. 

The main objectives of this study were: 

(i) To use molecular dynamics simulations in conjunction with the Green-

Kubo formalism to investigate the heat current auto-correlation 

functions of those metals in detail. 

(ii) To investigate the temperature dependence of phonon thermal 

conductivity and the phonon dynamics of Cu, Ni, Al and Ag in detail. 

(iii) To investigate, in detail, the power spectra of equilibrium fluctuations, 

which are characterized by the HCACF.  

(iv) To compare the results obtained for the f.c.c. Cu, Ni, Al and Ag with 

each other, and to estimate scaling relations between the lattice thermal 

conductivity and the other lattice properties, such as the coefficient of 

thermal expansion and the bulk modulus. 

(v) To use the obtained results for Cu, Ni, Al and Ag to compare them with 

previous simulation studies and the available experimental data on 

thermal conductivity. 

The outcome of this research will enhance our understanding on how the phonon 

thermal conductivity of metals can be predicted by using MD simulations, within the 

framework of the EAM, in conjunction with the Green-Kubo formalism. Another 

advantage of MD simulations is that testing thermal properties is faster and less 

expensive than by synthesising and characterizing in real experiments. Moreover, MD 

simulations provide some details of atomic-level information that would not be 

accessible in experiments. The results will also be compared with previous related 

theoretical and experimental data on thermal conductivity. 
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1.3 Thesis Structure 
 

In this thesis, the temperature dependence of the lattice thermal conductivity and phonon 

dynamics of the f.c.c. Cu, Ni, Al and Ag models are investigated with the most reliable 

EAM potentials [5-8] by treating the HCACF extracted from the equilibrium MD 

simulations within the framework of the analytical model. For this purpose, the thesis 

begins with an introductory chapter which provides an outline of the topics covered by 

the thesis. 

The first section of Chapter 2 focuses on the fundamental concepts of heat transfer 

in materials, including the thermal conductivity and structures of materials. As the two 

main contributors to thermal conductivity, lattice vibrations and free electrons are 

discussed in detail. The next section of this chapter discusses the MD simulations and 

details related to the simulations. The Green-Kubo method and the direct method for 

predicting thermal conductivity and the Lennard-Jones potential are then discussed. A 

general review of the related literature on the topic of this research study is presented. 

In Chapter 3, the Green-Kubo formalism, which is based on a system at equilibrium, 

is discussed in detail. The MD method and the general details of the simulations will be 

described. The various parameters, such as the elastic properties, the Debye wavelength, 

the average speed of sound, the Debye frequency and the Debye temperature of f.c.c. 

Cu, Al, Ni and Ag, will also be presented in this chapter. 

Chapter 4 begins with a description of the analytical model used for the HCACF. 

The temperature dependence of the lattice thermal conductivity and the phonon 

dynamics of the MD models of f.c.c. Cu, Ni, Al and Ag are investigated in detail, and 

show that the HCACF has a two-stage decay for a monoatomic lattice. Moreover, it was 

demonstrated that the HCACF calculated for wide temperature ranges for the NPT, NVT 

and NVE ensembles, as well as the averages over the three ensembles, can be universally 

modelled by this analytical function. 

Chapter 5 focuses on the decomposition model for lattice thermal conductivity. In 

particular, it is shown that the lattice thermal conductivity for a monoatomic crystal can 

be decomposed into two contributions due to the acoustic short- and long-range phonon 

modes. Furthermore, the contributions from the acoustic short- and long-range phonon 
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modes to the total phonon thermal conductivity will be presented in the form of simple 

kinetic formulas, consisting of the product heat capacity, the average phonon velocity 

and the average relaxation time.  

Chapter 6 presents the spectral representations of the analytical models for the 

HCACF. This can be used in the future to extract information on the lattice thermal 

conductivity and the phonon dynamics from the scattering and absorption spectroscopic 

measurements, with no gradients imposed on the crystal studied, if a proper resolution 

in the frequency range of approximately 1 – 20 THz is accessible.  

Chapter 7 compares the results obtained for the MD models of f.c.c. Cu, Ni, Al and 

Ag with each other. In addition, the objective was to compare the results obtained to 

those for the Lennard-Jones pair potential model of f.c.c. Ar. Estimations were made of 

scaling relations between the lattice thermal conductivity and other lattice properties 

readily accessible in experiments, such as the coefficient of the thermal expansion and 

the bulk modulus [1-3]. 

In the final chapter of this thesis, the important outcomes of the study are presented 

and a number of interesting possibilities for future work are recommended. 
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Chapter 2: Background and Literature Review 

2.1 The Fundamental Concepts of Heat Transfer in Materials 
 

Thermal conductivity is one of the fundamental physical properties of materials, and it 

is very important for heat exchange calculations and the evaluation of thermal insulation 

performance. In general, thermal conductivity has considerable impact on a wide range 

of technical applications containing the thermal management1 of mechanical, electrical 

and chemical sensors and transducers. Furthermore, the investigation of the fundamental 

physics of the heat conduction process can provide a detailed understanding of the nature 

of the structure dynamics in materials. The last two decades have seen dramatic 

improvements in experimental techniques and theoretical studies of thermal 

conductivity [13].  

 

2.1.1 The Kinetic Theory of Thermal Conductivity 

 

Heat is transferred by three basic mechanisms: conduction, convection, and radiation. 

Conduction is the transmission of heat from one molecule to another through a substance 

and thermal conductivity is the ability of a material to transfer heat through the 

conduction process. Fourier’s Law is shown in Equation 2.1: 

 

𝑄𝑄 = −𝑘𝑘
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 ,                                                                      (2.1) 

 

where, 𝑄𝑄 is the heat flux [W/m2], 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is the temperature gradient [K/m], 𝑘𝑘 is the thermal 

conductivity [W/mk], and the negative sign shows that the heat flows from the hot side 

area to the colder side. The rate of heat transfer is usually quantified in terms of the 

thermal conductivity coefficient  𝑘𝑘. The thermal conductivity of materials can be 

influenced by a number of factors, such as the molecular bonding, structure and density 

                                                           
1 Thermal management provides cooling solutions to protect electronic devices from damage by heat 
generation. 
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of materials [14]. Figure 2.1 illustrates the heat transfer process in materials through the 

conduction process. 

 

 

Figure 2.1: The conduction heat transfer process from high temperature (T1) to low temperature 

(T2) surfaces. A is the area perpendicular to the heat flow, 𝑄𝑄 is the rate of the conduction heat 

transfer and Δx is the distance of the heat transfer. 

The lattice vibrations (phonons)2 and the free electrons are the two main 

contributors to the transportation of heat in materials, as shown in Equation 2.2:      

  

𝑘𝑘 = 𝑘𝑘𝑒𝑒𝑒𝑒 + 𝑘𝑘𝑝𝑝ℎ,                                                                     (2.2)  

where, 𝑘𝑘𝑝𝑝ℎ and 𝑘𝑘𝑒𝑒𝑒𝑒  are the phonon and electronic contributions to the thermal 

conductivity, respectively [15]. While phonon thermal conductivity is defined by the 

vibrations of atoms around their equilibrium positions (crystal lattice) in solids, the 

electron contribution to the thermal conductivity is defined by the free electrons transfer 

of the thermal energy when the free electrons migrate from a high temperature area to a 

lower temperature area (see Figure 2.2) [15].  

 

 
Figure 2.2:  Schematic illustration of electronic contribution to the thermal conductivity in metal 

crystal structures. 

                                                           
2 Phonons are collective vibrations of the crystal lattice. 
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In particular, phonon thermal conductivity is defined by the kinetic theory 

expression: 

𝑘𝑘𝑝𝑝ℎ =
1
3
𝐶𝐶𝑉𝑉𝑠𝑠𝑝𝑝ℎΛ,                                                               (2.3) 

 

where, 𝐶𝐶𝑉𝑉 is the phonon specific heat per unit volume, 𝑠𝑠𝑝𝑝ℎ is the phonon velocity and 

𝛬𝛬3 is the mean free path of the phonons, which is defined as the average distance between 

two collisions, so 𝛬𝛬 = 𝑠𝑠𝑝𝑝ℎ𝜏𝜏, where 𝜏𝜏 is the relaxation time4 or the collision time (a 

similar expression is used for electron thermal conductivity) [14].  

 

2.1.2 The Wiedemann-Franz Law 

 

Usually, the Wiedemann-Franz law can be used to estimate the electron thermal 

conductivity 𝑘𝑘𝑒𝑒𝑒𝑒, which predicts 𝑘𝑘𝑒𝑒𝑒𝑒 to scale linearly with the product of the electrical 

conductivity and the temperature 𝜎𝜎𝑒𝑒𝑒𝑒𝑇𝑇. The electron thermal conductivity can be 

presented as: 

 

𝑘𝑘𝑒𝑒𝑒𝑒 = 𝐿𝐿0𝜎𝜎𝑒𝑒𝑒𝑒𝑇𝑇                                                                       (2.4) 

 

where, 𝜎𝜎𝑒𝑒𝑒𝑒 is the electric conductivity, 𝐿𝐿0 is the Lorenz constant (2.45×10-8 WΩ/K2) and 

T is the absolute temperature [16]. As a result, the phonon contribution to the total 

thermal conductivity can be explained as: 

 

                                                           
3 The average distance travelled between collisions. 
4 The time required for a system to return to equilibrium after perturbation. 
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𝑘𝑘𝑝𝑝ℎ = 𝑘𝑘 − 𝐿𝐿0𝜎𝜎𝜎𝜎                                                                 (2.5) 

 

The derivation of the law assumes that the relaxation times appropriate to thermal and 

electrical conduction are identical. However, the form of the departure of the electron 

distribution from equilibrium due to an electric field can be different from the departure 

produced by a temperature gradient [17]. As a result, the details of the assessment of 𝑘𝑘𝑒𝑒𝑒𝑒 

(and subsequently 𝑘𝑘𝑝𝑝ℎ), according to the Wiedemann-Franz law, can be incorrect [14, 

17-21]. Aside from the use of the Wiedemann-Franz law, the electronic and lattice 

contributions may be separated by measuring the magnetic-field dependence of the 

thermal conductivity [14, 22-24]. The method is based on the assumption that the 

electronic contribution to the thermal conductivity, as the electrical conductivity, can be 

sufficiently reduced by the application of a large magnetic field, so that one can isolate 

or extrapolate the lattice thermal conductivity, presuming it is field independent [14]. 

This technique requires very high electron mobility, so it was applied for semiconductors 

and semimetals [22, 24], while in ordinary metals this approach would not work [14]. 

Furthermore, it was shown in [23] that the utilization of thermal fluctuations or 

Johnson/Nyquist noise has the potential to be used as a spectroscopic technique to 

measure multiple transport properties, including the 𝑘𝑘𝑒𝑒𝑒𝑒, of conductors and 

semiconductors through the fluctuation spectra of the intrinsic conduction electrons 

without the application of [14] electrical potentials or thermal gradients. 

In general, a fundamental understanding of the factors affecting the electronic and 

lattice contributions to thermal conductivity is highly desirable for the development of 

advanced energy conversion devices that utilise the thermoelectric effect [25]. Indeed, 

the thermoelectric performance of a material is expressed by its dimensionless figure of 

merit5: 

 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑆𝑆2𝜎𝜎𝑒𝑒𝑒𝑒𝑇𝑇
𝑘𝑘

=
𝑆𝑆2𝜎𝜎𝑒𝑒𝑒𝑒𝑇𝑇
𝑘𝑘𝑒𝑒𝑒𝑒 + 𝑘𝑘𝑝𝑝ℎ

                                    (2.6) 

                                                           
5 A quantity used to define the performance of a device or method. 
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where 𝑆𝑆 is the Seebeck coefficient.6 It is straightforward to see from Equation 2.6 that 

the combination of low thermal conductivities with large values of 𝑆𝑆 and 𝜎𝜎𝑒𝑒𝑒𝑒 are required 

in order to achieve large values of the figure of merit. Since 𝑘𝑘𝑒𝑒𝑒𝑒 is supposed to scale 

approximately linearly with 𝜎𝜎𝑒𝑒𝑒𝑒𝑇𝑇, according to the Wiedemann-Franz law [14, 17, 19-

21, 25], researchers have generally focused on ways to decrease the lattice thermal 

conductivity 𝑘𝑘𝑝𝑝ℎ in order to enhance the figure of merit of a thermoelectric material [25-

27]. In this context, considerable effort for reducing the 𝑘𝑘𝑝𝑝ℎ has been made by managing 

the structure of the materials in order to increase the phonon blocking and phonon 

scattering by structural imperfections. This concept of engineering 𝑘𝑘𝑝𝑝ℎ employs 

different strategies, such as building up superlattices [28, 29] and nanostructures [30, 

31], incorporating suitable filler atoms into structural cages [32, 33], introducing point 

defects and their complexes by alloying with isoelectronic elements [34-39], and so on. 

Another conceptual approach for lowering the 𝑘𝑘𝑝𝑝ℎ can be based on an 

understanding of the interrelations between the lattice thermal conductivity and the other 

lattice properties readily accessible in experiments, such as thermal expansion and 

elasticity. With this understanding, guidelines for managing the structure in combination 

with the basic lattice properties can be formulated in designing new thermoelectric 

materials which have an exceptionally low phonon mediated contribution to the thermal 

conductivity. A methodological procedure which, in contrast to experimental methods, 

straightforwardly allows for a systematic study of the interrelations of the lattice thermal 

conductivity with the other properties of a perfect lattice can be based on the MD 

method. However, the complexity of typical thermoelectric materials makes both the 

accurate MD description of the materials and the evaluation of the interrelations between 

their lattice properties fairly difficult and not transparent. Meanwhile, a fundamental 

understanding of the scaling relations of the lattice thermal conductivity with other 

lattice properties can be achieved using a systematic MD study of a set of high-quality 

models of isostructural crystals (i.e., crystals which have the same structure but different 

lattice properties) which have a relatively simple cubic lattice. 

                                                           
6 A measure of the magnitude of an induced thermoelectric voltage in response to a temperature difference 
across the materials. 
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2.1.3 The Debye Model 

 

The Debye model is a method for estimating the phonon contribution to the heat capacity 

in a solid, introduced by Peter Debye in 1912. The thermal energy is determined as 𝑈𝑈 =

∫  𝐷𝐷(𝜔𝜔)〈𝑛𝑛(𝜔𝜔)〉ℏ𝜔𝜔 𝑑𝑑𝑑𝑑, where 𝐷𝐷(𝜔𝜔) is the density of state7 ( 𝐷𝐷(𝜔𝜔) = 𝑉𝑉𝜔𝜔2

2𝜋𝜋2𝑠𝑠3
), (where 𝑠𝑠 is 

the speed of sound, 𝜔𝜔 is the frequency and 𝑉𝑉 is the volume) and the thermal equilibrium 

occupancy of the phonons is described by the Planck distribution as 〈𝑛𝑛〉 = 1
exp (ℏ𝜔𝜔 𝑇𝑇)−1⁄  . 

As a result, the thermal energy is given by: 

 

𝑈𝑈 = � �
𝑉𝑉𝜔𝜔2

2𝜋𝜋2𝑠𝑠3
�

𝜔𝜔𝐷𝐷

0
�

ℏ𝜔𝜔
𝑒𝑒ℏ𝜔𝜔 𝑇𝑇⁄ − 1

� 𝑑𝑑𝑑𝑑 =
3𝑉𝑉𝑘𝑘𝐵𝐵4𝑇𝑇4

2𝜋𝜋2𝑠𝑠3ℏ3
 �

𝑥𝑥3

𝑒𝑒𝑥𝑥 − 1
𝑑𝑑𝑑𝑑,

𝑥𝑥𝐷𝐷

0
                     (2.7) 

 

where, 𝑥𝑥 ≡ ℏ𝜔𝜔 𝑇𝑇⁄ ≡ ℏ𝜔𝜔 𝑘𝑘B𝑇𝑇⁄  and 𝑥𝑥𝐷𝐷 ≡ ℏ𝜔𝜔𝐷𝐷 𝑘𝑘B𝑇𝑇⁄ ≡ 𝑇𝑇𝐷𝐷 𝑇𝑇⁄  that Debye Temperature8 

(𝑇𝑇𝐷𝐷) is defined as 𝑇𝑇𝐷𝐷 = ℏ𝑠𝑠
𝑘𝑘𝐵𝐵

. �6𝜋𝜋
2𝑁𝑁
𝑉𝑉
�
1 3⁄

, so that the total phonon energy is defined by: 

 

𝑈𝑈 = 9𝑛𝑛𝑘𝑘𝐵𝐵𝑇𝑇 �
𝑇𝑇
𝑇𝑇𝐷𝐷
��

𝑥𝑥3

𝑒𝑒𝑥𝑥 − 1
𝑑𝑑𝑑𝑑,

𝑥𝑥𝐷𝐷

0
                                                 (2.8) 

 

where, 𝑥𝑥𝐷𝐷 = 𝑇𝑇𝐷𝐷 𝑇𝑇⁄  and 𝑛𝑛 is the number of atoms in the specimen [20]. 

Heat capacity is the measure of the amount of energy the system needs to 

increase the temperature by one degree. There are two types of heat capacity: the heat 

capacity at constant volume 𝐶𝐶𝑉𝑉,  𝐶𝐶𝑉𝑉 = �𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�𝑉𝑉 (where 𝐸𝐸 is the energy and 𝑇𝑇 is the 

                                                           
7 Which describes the number of states per interval of energy at each energy level. 
8 Which estimates the phonon contribution to the specific heat in a solid. 
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temperature) and the heat capacity at constant pressure 𝐶𝐶𝑃𝑃  9. The contribution of the 

phonons to the heat capacity of a crystal is called the lattice heat capacity [20]. The heat 

capacity of solids, according to the Debye approximation, can also be calculated using 

the following equation. In this equation, 𝜔𝜔𝐷𝐷 is the Debye frequency. It is close to the 

maximum frequency derived from the interatomic force constant [19]: 

 

𝐶𝐶𝑣𝑣,𝑝𝑝(𝑇𝑇) = 9
𝑘𝑘𝐵𝐵
𝑚𝑚
�
𝑘𝑘𝐵𝐵𝑇𝑇
ℏ𝜔𝜔𝐷𝐷

�
3

𝑛𝑛�
𝑥𝑥4𝑒𝑒𝑥𝑥

(𝑒𝑒𝑥𝑥 − 1)2 𝑑𝑑𝑑𝑑,   
ℏ𝜔𝜔𝐷𝐷 𝑘𝑘𝐵𝐵𝑇𝑇⁄

0
    
𝑘𝑘𝐵𝐵𝑇𝑇
ℏ𝜔𝜔𝐷𝐷

≡
𝑇𝑇
𝑇𝑇𝐷𝐷

                           (2.9) 

 

𝐶𝐶𝑣𝑣,𝑝𝑝(𝑇𝑇) = 9
𝑘𝑘𝐵𝐵
𝑚𝑚
�
𝑇𝑇
𝑇𝑇𝐷𝐷
�
3
𝑛𝑛�

𝑥𝑥4𝑒𝑒𝑥𝑥

(𝑒𝑒𝑥𝑥 − 1)2 𝑑𝑑𝑑𝑑,   
ℏ𝜔𝜔𝐷𝐷 𝑘𝑘𝐵𝐵𝑇𝑇⁄

0
                                                      (2.10) 

 

where, 𝑛𝑛 is the number of atoms in the specimen, 𝑇𝑇𝐷𝐷 is the Debye Temperature, 𝑘𝑘𝐵𝐵 is the 

Boltzmann constant, 𝑚𝑚 is the mass of atom and ℏ is the reduced Planck constant (ℏ =

ℎ/2𝜋𝜋). 

 

2.1.4 The Grüneisen Parameter 

 

The effect of changing the volume and temperature on the vibrational properties and size 

of the lattice is described by the Grüneisen parameter. The thermodynamic Grüneisen 

parameter is defined by: 

 

𝛾𝛾 = 𝑉𝑉 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑉𝑉

=
𝛼𝛼𝑃𝑃
𝐶𝐶𝑉𝑉𝛽𝛽𝑇𝑇

                                                            (2.11) 

 

                                                           
9 A thermodynamic relation gives 𝐶𝐶𝑃𝑃 − 𝐶𝐶𝑉𝑉 = 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇

𝛼𝛼𝑃𝑃2

𝛽𝛽T
, where 𝑉𝑉 is the atomic volume,  𝛼𝛼𝑃𝑃 is the 

coefficient of thermal expansion, 𝑇𝑇 is the temperature, and 𝛽𝛽𝑇𝑇 is the isothermal compressibility. 
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where, 𝑉𝑉 is the volume, 𝐸𝐸 is the energy, 𝛼𝛼𝑃𝑃10 is the coefficient of thermal expansion, 

𝐶𝐶𝑉𝑉11 is the heat capacity at a constant volume, and 𝛽𝛽𝑇𝑇12 is the isothermal compressibility.  

 

2.1.5 Structure and Elastic Properties 

 

This research considers the crystal (solid) phase of Copper (Cu), Nickel (Ni), Silver (Ag) 

and Aluminium (Al). 

The crystal structures of atoms and molecules in solids are unique formations that 

can be described in terms of a lattice. The simple cubic (sc) lattice, the body-centred 

cubic13 (b.c.c.) lattice and the face-centred cubic14 (f.c.c.) lattice are three lattices in the 

cubic system. Table 2.1 gives the essential information on these crystal structures [20]. 

In the f.c.c. crystal, the atomic displacement is isotropic and all of the atoms are at 

equivalent positions [19]. 

 

Table 2.1: Basic information about lattice structures 

 Simple Body-centred Face-centred 

Unit cell volume* a3 a3 a3 

Number of atoms in one unit 

cell 
1 2 4 

Primitive cell volume a3 𝑎𝑎3
2�  𝑎𝑎3

4�  

Number of nearest neighbors 6 8 12 

Nearest-neighbor distance a 31/2𝑎𝑎
2�  𝑎𝑎

21/2�  

*In terms of the lattice parameter a 

 

In crystal the state, Cu, Ni, Ag and Al have f.c.c. lattices. Figure 2.3 shows the 

f.c.c. lattice structures. 

 

                                                           
10 Characterizes how the size or volume of an objective changes with a change in temperature. 
11 The amount of heat required to enhance the temperature of a system by one degree. 
12 Describes how the volume of a system changes as a function of the pressure at a constant temperature. 
13 Body-centred cubic is a cube where atoms are arranged at the corners of the cube with an atom situated 
in the middle of the unit cell. 
14 Face-centred cubic is a cube where atoms are arranged at the corners and centre of each face of the unit 
cell. 
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                                                             (a)                                           (b) 

 

Figure 2.3: (a) Face-centred cubic lattice structure (f.c.c.); (b) In the f.c.c. crystal, the centre 

atom has 12 nearest neighbours and it is an isotropic structure [2]. 

 

Phonons are the collective vibrations of the crystal lattice which make a significant 

contribution to many of the physical properties of materials, including the heat capacity 

and thermal conductivity [19]. In solids, atoms join up with each other through bonds 

that can be modelled as springs (see Figure 2.4). The temperature difference causes the 

vibrations of the hot region to be transmitted through the springs to the cooler region. 

As a result, all the atoms start to vibrate and transfer the thermal energy. There are two 

types of phonons: acoustic and optical phonons [19]. Monoatomic solids can 

demonstrate only one type of phonon, namely, acoustic phonons. In contrast to 

monoatomic solids, the smallest unit cell of binary alloys exhibits two types of phonons: 

acoustic and optical phonons. In the optical mode, two neighbouring atoms move 

opposite to each other but in the acoustic mode they move together, as shown in Figure 

2.5:  

 

 

Figure 2.4: Schematic diagram of conduction by lattice vibration 

 

http://www.google.com.au/url?sa=t&rct=j&q=&esrc=s&source=web&cd=15&cad=rja&ved=0CEgQtwIwBDgK&url=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRoyzZUJfo-Y&ei=u6aAUeiOF8mfiQeUjoCQBw&usg=AFQjCNGUhPuz-f3bAJBjJyrPfN2pC7Gvfg&sig2=b1UI8KXi55h-dC9y644U7g
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                                                (a)                                                 (b) 

Figure 2.5:  Schematic diagram of optical and acoustic phonons. (a) Dispersion curves in the 

linear diatomic chain, where k is the wave-vector (related to wavelength k=2π/λ) and ω is the 

frequency; (b) Optical and acoustic vibrations in the linear diatomic chain. m1 and m2 are the 

atomic masses that are repeated periodically at a distance a.  

 

The elastic properties of a solid are defined by interatomic forces when the atoms 

are moved from their equilibrium position. The general form of Hooke’s law is: 

 

𝜎𝜎𝑖𝑖𝑖𝑖 = � 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑘𝑘𝑘𝑘,
𝑘𝑘𝑘𝑘

                                                                   (2.12) 

 

where, 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the tensor of elastic constants, which has 3×3×3×3 = 81 components, with 

only 36 being independent elastic constants. In cubic crystals 𝐶𝐶11 = 𝐶𝐶22 = 𝐶𝐶33, 𝐶𝐶12 =

𝐶𝐶21 = 𝐶𝐶23 =  𝐶𝐶32 = 𝐶𝐶13 = 𝐶𝐶31, 𝐶𝐶44 = 𝐶𝐶55 = 𝐶𝐶66 and the other components are zero, 

with  𝐶𝐶11 = 𝜎𝜎𝑥𝑥𝑥𝑥 𝜀𝜀𝑥𝑥𝑥𝑥� ,  𝐶𝐶12 = 𝜎𝜎𝑥𝑥𝑥𝑥 𝜀𝜀𝑦𝑦𝑦𝑦�  and  𝐶𝐶44 = 𝜎𝜎𝑥𝑥𝑥𝑥
𝜀𝜀𝑥𝑥𝑥𝑥�  describing the longitudinal 

compression, transverse expansion and shear modulus, respectively. In these equations, 

𝜎𝜎𝑥𝑥𝑥𝑥 and 𝜎𝜎𝑥𝑥𝑥𝑥 present the compression and shear stress, respectively. Also, 𝜀𝜀𝑥𝑥𝑥𝑥 and 𝜀𝜀𝑦𝑦𝑦𝑦 

show the compression strain and 𝜀𝜀𝑥𝑥𝑥𝑥 shows the shear strain. The elastic properties have 

an important effect on the thermal conductivity of materials [40]. 

 

2.1.6 The Normal and Umklapp Processes 

 

In an anharmonic crystal, the lattice vibrations (lattice waves or phonons) are not 

independent, but interact with each other. In particular, the dynamical effects due to this 
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interaction, such as the three phonon-phonon scattering processes, give rise to the 

phenomenon of intrinsic lattice (phonon) thermal conductivity [17, 41, 42]. The 

theoretical description of the lattice thermal conductivity is rather more complicated than 

an analytical treatment of the anharmonic effects in relation to other lattice properties, 

such as thermal expansion, elasticity and heat capacity. The problem arises from the fact 

that the thermal conductivity, in contrast to other lattice properties, cannot be readily 

expressed using the lattice sums. Instead, one first has to solve the Boltzmann equation 

for the phonon distribution function, originally formulated by Peierls [41, 42]. 

Furthermore, a mechanism for establishing a local thermal equilibrium distribution of 

the phonons needs to also be elucidated. This research, however, is not concerned with 

the interactions of phonons with the crystal boundaries, lattice imperfections and 

electrons. These contributions to the lattice thermal conductivity can be neglected in 

comparison with the phonon-phonon interactions for sufficiently large and perfect 

crystals at sufficiently high temperatures. 

Peierls was the first to point out [41, 42] that the three-phonon scattering process 

is of the form: 

 

𝒒𝒒1 + 𝒒𝒒2 = 𝒒𝒒3,                                                                  (2.13) 

 

Consisting of the interaction of two phonons with wave vectors 𝒒𝒒1 and 𝒒𝒒2 to produce a 

third phonon with a wave vector 𝒒𝒒3 within the first Brillouin zone15 cannot establish 

equilibrium. This is because the scattering process given in Equation 2.13 conserves the 

phonon momentum (which is ℏ𝒒𝒒 for a phonon with a wave vector 𝒒𝒒). Such non-resistive 

scattering processes are called normal processes or N-processes. To enable a way for 

restoring the non-equilibrium phonon distribution to the equilibrium, Peierls suggested 

[41, 42] a three-phonon scattering process which does not conserve the total phonon 

momentum: 

 

𝒒𝒒1 + 𝒒𝒒2 = 𝒒𝒒3 + 𝒈𝒈,                                                                (2.14) 

 

where, 𝒈𝒈 is a reciprocal lattice vector. Equation 2.14 reflects the fact that if a wave vector 

of the produced phonon is outside the first Brillouin zone then it can be transformed into 

                                                           
15 The Brillouin Zone is determined as a primitive cell in the reciprocal lattice. 
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a physically equivalent wave vector inside the first Brillouin zone by the addition of a 

reciprocal lattice vector 𝒈𝒈. Such resistive scattering processes are called Umklapp 

processes or U-processes. It follows on from Equation 2.14 that the wave vectors of 

phonons suitable for the Umklapp processes must satisfy the following condition: 

 

|𝒒𝒒1 + 𝒒𝒒2| >
1
2

|𝒈𝒈𝑚𝑚𝑚𝑚𝑚𝑚|.                                                        (2.15) 

 

In other words, at least one of the two initial phonons suitable for a U-process must have 

a wave vector which exceeds 1
4

|𝒈𝒈min| in magnitude, where 𝒈𝒈min is the shortest 

reciprocal lattice vector [42]. Both the N-processes and the U-processes conserve the 

phonon energy (which is ℏ𝜔𝜔 for a phonon with angular frequency 𝜔𝜔), since it can be 

expressed by: 

 

𝜔𝜔1 + 𝜔𝜔2 = 𝜔𝜔3,                                                                   (2.16) 

 

where, 𝜔𝜔1, 𝜔𝜔2 and 𝜔𝜔3 are the angular frequencies of the phonons participating in the 

scattering processes. It should also be noted that in the crystal, the phonon scattering 

processes clearly exist; the reverse of the processes is given by Equations 2.13, 2.14 and 

2.16. In addition, despite the N-processes themselves not tending to restore the phonon 

equilibrium distribution and not contributing to the thermal resistance, the N-processes 

may still have a profound influence on the lattice thermal conductivity. These processes 

have the significant effect of transferring energy between the different phonon modes, 

thus preventing large deviations from the equilibrium distribution. 
 

 

                                           (a)                                                                    (b) 
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Figure 2.6: In Figures (a) and (b), the squares demonstrate the first Brillouin zone. (a) The 

N-processes show two incoming phonons with wave-vectors 𝒒𝒒1 and 𝒒𝒒2 (blue) generating one 

outgoing phonon with a wave vector 𝒒𝒒3 (red). (b) The U-Processes illustrate that the sum of the 

two wave-vectors 𝒒𝒒1 and 𝒒𝒒2 might point to outside the Brillouin zone (𝒒𝒒3
, ). As shown in Figure 

2.6(b), the 𝒒𝒒3
, outside the first Brillouin zone are physically equivalent to the vectors inside it and 

can be mathematically transformed into each other by the addition of a reciprocal lattice 

vector 𝒈𝒈.  

 

2.1.7 The Boltzmann Equation  
 

In the presence of a temperature gradient, when steady state is established, the 

Boltzmann equation can be written as [17, 41, 42]: 

 

𝒗𝒗G𝛁𝛁𝑇𝑇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
scatt.

,                                                        (2.17) 

 

where, the left- and right-hand sides represent the balanced rates of change of a perturbed 

phonon distribution 𝑛𝑛 of a given phonon mode due to the temperature gradient 𝛁𝛁𝑇𝑇 

(transport term) and due to the phonon scattering processes (collision term), 

respectively, while 𝒗𝒗G denotes the group velocity of the phonon mode. Each phonon 

mode can be characterised by an angular frequency 𝜔𝜔 = 𝜔𝜔(𝒒𝒒, 𝑏𝑏) which is a function of 

the phonon wave vector 𝒒𝒒 and the phonon polarization 𝑏𝑏 (branch index), so that 𝑛𝑛 =

𝑛𝑛(𝒒𝒒, 𝑏𝑏) and: 

 

𝒗𝒗G(𝒒𝒒, 𝑏𝑏) =
𝜕𝜕𝜕𝜕(𝒒𝒒, 𝑏𝑏)

𝜕𝜕𝒒𝒒
.                                                        (2.18) 

 

In the case of a monatomic lattice (i.e., a Bravais lattice) consisting of 𝑁𝑁 atoms, which 

will be considered in the present work, there are 3𝑁𝑁 possible phonon modes with 𝑏𝑏 = 1, 

2 and 3 enumerating the three acoustic branches, one longitudinal and two transverse. 

Furthermore, if the deviation of 𝑛𝑛 from the equilibrium phonon distribution 𝑛𝑛0 is 

assumed to be small, in the transport terms of Equation 2.17 one can replace 𝑛𝑛 by 𝑛𝑛0 by 
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keeping only the first order in the temperature gradient. Considering that the equilibrium 

phonon distribution is given by Bose-Einstein statistics [17, 41, 42]: 

 

𝑛𝑛0 = �exp �
ℏ𝜔𝜔
𝑘𝑘B𝑇𝑇

� − 1�
−1

,                                                   (2.19) 

 

one can readily obtain: 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

≈
𝜕𝜕𝑛𝑛0
𝜕𝜕𝜕𝜕

=
𝑐𝑐
ℏ𝜔𝜔

,                                                             (2.20) 

 

where, 𝑘𝑘B is the Boltzmann constant, ℏ is the Planck constant divided by 2𝜋𝜋, while: 

 

𝑐𝑐 =
ℏ2𝜔𝜔2

𝑘𝑘B𝑇𝑇2
 (1 + 𝑛𝑛0)𝑛𝑛0                                                           (2.21) 

 

is the phonon specific heat. 

However, a rigorous theoretical construction of the collision term that leads to a 

satisfactory solution of Equation 2.17 is much more difficult [43]. The main point here is 

to understand in detail how to precisely evaluate the collision term in order to make it 

applicable for a reliable description of the phonon-phonon scattering processes spanning 

the entire frequency range, from the low-frequency domain to the Debye frequency. 

Indeed, despite both the low- and high-frequency domains being experimentally 

accessible at present using ultrasonic and light scattering techniques and neutron scattering 

techniques, respectively, because of experimental difficulties, very little is known about 

the intermediate frequency region [44-47]. Future progress in this context might be 

expected with the development of modern laser and cold neutron based scattering 

techniques. At the same time, it should be noted that the different phenomenological 

models have been intensively studied for approximate treatments of the collision term of 

Equation 2.17 [17]. One of the most widely used treatments for analysing the experimental 

data on lattice thermal conductivity is the treatment attributed to Callaway [36]. 

Callaway’s treatment is based on the so-called relaxation-time approximation [17] 

of the collision term in Equation 2.17 by an expression of the following form: 
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�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
scatt.

≈ −
𝑛𝑛 − 𝑛𝑛0
𝜏𝜏U

−
𝑛𝑛 − 𝑛𝑛0′

𝜏𝜏N
,                                                (2.22) 

 

where, 𝑛𝑛0′ = 𝑛𝑛0 �
ℏ𝜔𝜔−ℏ𝒒𝒒𝒒𝒒
𝑘𝑘B𝑇𝑇

� is the so-called displaced phonon distribution which can be 

viewed as the equilibrium phonon distribution relative to a coordinate system which 

moves with velocity 𝒖𝒖 (𝒖𝒖 is the drift velocity in the direction of the heat flow), 𝜏𝜏U =

𝜏𝜏U(𝒒𝒒, 𝑏𝑏,𝑇𝑇) is the mode-dependent relaxation time for the U-processes (in the presence 

only of the phonon-phonon scattering process) to restore a perturbed phonon distribution 

to an equilibrium phonon distribution, and 𝜏𝜏N = 𝜏𝜏N(𝒒𝒒, 𝑏𝑏,𝑇𝑇) is the mode-dependent 

relaxation time for the N-processes to restore a perturbed phonon distribution to a 

displaced phonon distribution. This phenomenological approximation of the collision 

term is qualitatively in line with the abovementioned reasoning that the non-resistive 

scattering N-processes should have an effect on the lattice thermal conductivity, but not 

the same as the resistive scattering U-processes, which tend to restore the true thermal 

equilibrium [17]. Then, assuming that the magnitude of the drift velocity 𝒖𝒖 is noticeably 

smaller than the magnitude of the phonon phase velocity 𝒗𝒗P(𝒒𝒒, 𝑏𝑏) = 𝜔𝜔(𝒒𝒒, 𝑏𝑏) 𝒒𝒒⁄  for all 

acoustic phonon modes (𝑢𝑢 ≪ 𝑣𝑣P(𝒒𝒒, 𝑏𝑏)), one can expand 𝑛𝑛0′  to the first order in 𝒗𝒗P𝒖𝒖 𝑣𝑣P2⁄  

as: 

 

𝑛𝑛0′ ≈ 𝑛𝑛0 +
𝒗𝒗P𝒖𝒖
ℏ𝜔𝜔𝑣𝑣P2

𝑇𝑇𝑇𝑇,                                                         (2.23) 

 

and readily find the solution of the Boltzmann equation as: 

 

𝑛𝑛 = 𝑛𝑛0 −
𝑐𝑐
ℏ𝜔𝜔

𝜏𝜏M𝒗𝒗G𝛁𝛁𝑇𝑇 ,                                                     (2.24) 

 

where, 𝜏𝜏M = 𝜏𝜏M(𝒒𝒒, 𝑏𝑏,𝑇𝑇) is an effective relaxation time for a given phonon mode. It is 

relatively simple to see that 𝜏𝜏M can be expressed as: 

 

𝜏𝜏M = 𝜏𝜏C +
𝜏𝜏C
𝜏𝜏N

𝜇𝜇
𝑣𝑣P𝑣𝑣G

,                                                        (2.25) 

 

where, 𝜏𝜏C = 𝜏𝜏C(𝒒𝒒, 𝑏𝑏,𝑇𝑇) is a combined relaxation time determined as: 
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1
𝜏𝜏C

=
1
𝜏𝜏U

+
1
𝜏𝜏N

,                                                             (2.26) 

 

and 𝜇𝜇 can be interpreted as the phonon mobility, since it is the coefficient of the 

proportionality between the drift velocity 𝒖𝒖 and the thermodynamic force 𝑿𝑿 = − 1
𝑇𝑇
𝛁𝛁𝑇𝑇 due 

to the temperature gradient: 

 

𝒖𝒖 = 𝜇𝜇𝑿𝑿.                                                                  (2.27) 

 

The phonon mobility can be determined from the condition that the rate of changing the 

total phonon momentum due to the N-processes must be zero: 

 

�ℏ𝒒𝒒
𝑛𝑛(𝒒𝒒, 𝑏𝑏) − 𝑛𝑛0′ (𝒒𝒒, 𝑏𝑏)

𝜏𝜏N(𝒒𝒒, 𝑏𝑏)

3𝑁𝑁

𝒒𝒒,𝑏𝑏

= 0.                                                (2.28) 

 

For a cubic crystal (isotropic case), this leads to (see also Equations 2.23 – 2.27): 

 

𝜇𝜇 = �
𝑐𝑐(𝒒𝒒, 𝑏𝑏)𝒗𝒗G(𝒒𝒒,𝑏𝑏)𝜏𝜏C(𝒒𝒒, 𝑏𝑏)

𝒗𝒗P(𝒒𝒒, 𝑏𝑏)𝜏𝜏N(𝒒𝒒,𝑏𝑏)

3𝑁𝑁

𝒒𝒒,𝑏𝑏

�
𝑐𝑐(𝒒𝒒, 𝑏𝑏)𝜏𝜏C(𝒒𝒒, 𝑏𝑏)

𝑣𝑣P2(𝒒𝒒, 𝑏𝑏)𝜏𝜏U(𝒒𝒒,𝑏𝑏)𝜏𝜏N(𝒒𝒒,𝑏𝑏)

3𝑁𝑁

𝒒𝒒,𝑏𝑏

� .                    (2.29) 

 

Once the Boltzmann equation is solved for 𝑛𝑛(𝒒𝒒, 𝑏𝑏), either from first principles, or 

by using different approximate approaches, one can find the microscopic heat current 

vector per unit volume 𝑉𝑉 (the heat flux) in the form first derived by Peierls [41, 42]: 

 

𝑱𝑱 =
1
𝑉𝑉
�ℏ𝜔𝜔(𝒒𝒒, 𝑏𝑏)𝑛𝑛(𝒒𝒒, 𝑏𝑏)𝒗𝒗G(𝒒𝒒, 𝑏𝑏)
3𝑁𝑁

 𝒒𝒒,𝑏𝑏 

.                                         (2.30) 

 

It is important to note that 𝑱𝑱 = 0 when 𝑛𝑛 = 𝑛𝑛0, since 𝜔𝜔 and 𝑛𝑛0 are even functions of 𝒒𝒒 

while 𝒗𝒗G is an odd function of 𝒒𝒒. In particular, it is straightforward to see from Equations 

2.24, 2.25 and 2.30 that the expression for the lattice thermal conductivity of a cubic 
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crystal, which follows from Callaway’s treatment of the collision term, can be written 

as: 

 

𝑘𝑘 = −
𝑱𝑱
𝛁𝛁𝑇𝑇

= 𝑘𝑘1
Callaway + 𝑘𝑘2

Callaway,                                           (2.31) 

 

where 

 

𝑘𝑘1
Callaway =

1
3𝑉𝑉

�𝑐𝑐(𝒒𝒒, 𝑏𝑏)𝑣𝑣G2(𝒒𝒒, 𝑏𝑏)𝜏𝜏C(𝒒𝒒,𝑏𝑏),
3𝑁𝑁

 𝒒𝒒,𝑏𝑏 

                                 (2.32) 

 

𝑘𝑘2
Callaway =

𝜇𝜇
3𝑉𝑉

�
𝑐𝑐(𝒒𝒒, 𝑏𝑏)𝑣𝑣G(𝒒𝒒, 𝑏𝑏)𝜏𝜏C(𝒒𝒒, 𝑏𝑏)

𝑣𝑣P(𝒒𝒒, 𝑏𝑏)𝜏𝜏N(𝒒𝒒,𝑏𝑏) .
3𝑁𝑁

 𝒒𝒒,𝑏𝑏 

                               (2.33) 

 

Despite the purely phenomenological inclusion of the contribution of the 

N-processes in the collision term, without clear physical elucidation of their role in the 

restoring of the equilibrium phonon distribution, Callaway’s treatment had great success 

in interpreting experimental results over the simplest (single) relaxation-time 

approximations which neglect the second term on the right-hand side of Equation 2.22 

[17]. Even using the simplifying assumptions of the Debye theory, Callaway’s 

expression for the lattice thermal conductivity [36], consisting of two terms, is able to 

reproduce the experimental data with a reasonably good accuracy [17]. Thus, Callaway’s 

treatment remarkably demonstrates that in order to properly fit the experimental data on 

lattice thermal conductivity, one needs to construct the collision term in the Boltzmann 

equation in such a reasonable way that underlines the roles of the U-processes and the 

N-processes in restoring equilibrium and the displaced phonon distributions, 

respectively. As a result, this can be considered as a strong indication that a relevant 

solution of the Boltzmann equation should eventually lead to the decomposition of the 

lattice thermal conductivity into two distinct contributions. 
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2.1.8 Real Space and Phonon Space 

 

The analysis of the phonon heat conduction in crystal structures is usually done in the 

phonon or wave-vector spaces. Thermal conductivity is influenced by the phonon’s 

characteristics, such as mean free path, velocity, etc. The design and synthesis of new 

materials are realized in real space, while the phonon space is more convenient for the 

analysis of their thermal properties [48]. Hence, defining a relationship between the real 

space and the phonon space is essential for the effective application of information on 

lattice dynamics. In this research, molecular dynamics simulation is considered where 

the Newton laws of motion have been used to predict the position and momentum space 

trajectories of a classical particles system. The atomic structures and suitable interatomic 

potentials are inputs that can be achieved from experimental data or ab initio16 results. 

Molecular dynamics simulation can also provide an opportunity to investigate the 

phonon dynamics in greater detail [2]. 

 

2.2 The Molecular Dynamics Method  
 

Thermal transport phenomena have been an attractive research topic for many years, and 

as a result many methods, such as Molecular Dynamics [49], Monte Carlo [18] and the 

Boltzmann transport equation, have been used to investigate thermal transport 

numerically [50]. MD is a computer simulation method where the time evolution of a 

set of interacting atoms is followed by numerically integrating their equations of motion. 

It has two different types: the first type is ab initio molecular dynamics and the second 

type is classical molecular dynamics17 [1]. At high temperatures (approximately above 

the Debye temperature) classical MD simulations have been successfully used to 

calculate thermal conductivity [1]. 

During phase transformations or recrystallization processes, latent heat gives rise 

to a thermal gradient in the local region surrounding an interface. As a result, the 

interface mobility, which is one of the most important properties of an interface, can be 

                                                           
16 The term ab initio means that from first principles one can make a rational approximation of the solution 
of the Schrödinger equation. 
17 Classical molecular dynamics calculates the time dependent behaviour of a molecular system. 
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affected [51]. Despite the importance of interface mobility in understanding the physics 

underlying the kinetics of phase transformation or recrystallization, there are only a few 

successful experimental measurements of interface mobility [52, 53]. Currently, much 

of our understanding of the kinetic properties of interfaces has been derived from MD 

simulations [51, 54, 55]. However, one would expect that the classical MD simulations 

of metals underestimate the magnitude of the thermal conductivity due to the absence of 

the free-electron contribution [9]. Accordingly, without an accurate knowledge of the 

thermal conductivity it is difficult to assess how well classical MD simulations of metals, 

together with EAM interatomic potentials [40], are able to predict the kinetic properties 

of interfaces. Indeed, there is a concern in predicting non-equilibrium flows in the local 

region surrounding an interface, since the free-electron contribution to the thermal 

conductivity can outweigh the phonon contribution [9]. 

 

2.2.1 Thermodynamic Ensembles and Equations of Motion 

 

MD uses the classical equation of motion, which comes from the second law of Newton, 

and is expressed as iii amF 
= , where iF


is the force [kgm/s2], im  is the mass [kg], and ia  

is the acceleration [m/s2]. The integration of Newton’s equation in MD simulations is 

usually achieved through several algorithms, including the velocity Verlet, Verlet leap-

frog, and Gear predictor-correction algorithms, that are dependent on the 

thermodynamic ensembles [12]. The most natural ensemble18 is the NVE (micro 

canonical) in which the number of atoms N, the system volume V and the total energy 

E, are all fixed quantities, while the temperature and pressure of the system fluctuate 

around their average values. In other ensembles, the temperature and pressure of the 

system can be set through the application of different thermostats19 and barostats.20 In 

the NVE ensemble, the equation of motion for particle 𝑖𝑖 is expressed as 𝐅𝐅𝑖𝑖 = 𝑑𝑑𝐩𝐩𝑖𝑖
𝑑𝑑𝑑𝑑

 . In this 

study, the Verlet leap-frog algorithm has been used, where the positions and momenta 

are offset by a half time step [56], as shown in Equations 2.34 and 2.35: 

                                                           
18 The most natural ensemble is the NVE since Newton's equations of motion lead naturally to the 
conservation of energy. 
19 A thermostat is a part of a control system which adjusts the system's temperature near a selected set 
point. 
20 A barostat is a device used to preserve constant pressure in a closed chamber. 
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𝒓𝒓𝑖𝑖(𝑡𝑡 + ∆𝑡𝑡) = 𝒓𝒓𝑖𝑖(𝑡𝑡) + 𝒑𝒑𝑖𝑖 �𝑡𝑡 +
∆𝑡𝑡
2
�
∆𝑡𝑡
𝑚𝑚𝑖𝑖

,                                              (2.34) 

 

𝒑𝒑𝑖𝑖 �𝑡𝑡 +
∆𝑡𝑡
2
� = 𝒑𝒑𝑖𝑖 �𝑡𝑡 −

∆𝑡𝑡
2
� + 𝑭𝑭𝑖𝑖∆𝑡𝑡,                                                    (2.35) 

 

where, 𝑚𝑚𝑖𝑖 is the mass of atom i, whereas 𝒓𝒓𝑖𝑖 and 𝒑𝒑𝒊𝒊 are the position and momentum 

vectors for atom i, respectively.  

When the MD simulations run with a thermostat, the system is said to be in the 

NVT (canonical) ensemble where the equation of motion is modified with the damping 

parameter 𝜂𝜂 as:  𝑑𝑑𝒑𝒑𝑖𝑖
𝑑𝑑𝑑𝑑

=  𝑭𝑭𝑖𝑖 − 𝜂𝜂𝒑𝒑𝑖𝑖 [2]. The authors of [2] described that the damping 

parameter changes in time according to the following ordinary differential equation: 

  𝑑𝑑𝜂𝜂
𝑑𝑑𝑑𝑑

= 1
𝜏𝜏𝑇𝑇2

� 𝑇𝑇
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

− 1�, where 𝜏𝜏𝑇𝑇 is the reservoir-system time constant and 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 is the 

desired temperature. When the independent variables are the system mass, pressure and 

temperature, the system is said to be in the NPT (isobaric-isothermal) ensemble. In this 

case, the equation of motion is expressed as 𝑑𝑑𝐩𝐩𝑖𝑖
𝑑𝑑𝑑𝑑

=  𝑭𝑭𝑖𝑖 − 𝜂𝜂𝒑𝒑𝑖𝑖 − 𝜖𝜖𝒑𝒑𝑖𝑖 with the time history 

of parameter 𝜖𝜖 being specified as: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
𝜏𝜏𝑃𝑃2

� 𝑃𝑃
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠

− 1�, where 𝜏𝜏𝑃𝑃 is the barostate time 

constant and 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 is the pressure [56]. The Nosé-Hoover thermostat is used to generate 

suitable temperature fluctuations for the NPT and NVT ensembles. The Nosé-Hoover 

barostat can produce the appropriate pressure fluctuations for the NPT ensemble [2]. 

 

2.2.2 Periodic Boundary Condition 

 

MD simulations consist of thousands of atoms in a small system. As a result, a periodic 

boundary condition is used to prevent problems with boundary effects due to the finite 

size of the simulation cell. This ensures that the number density of the atoms in the 

simulation domain and the momentum of the whole system are preserved [57]. In this 

case, when a particle moves in the central cell, its periodic image particles in each of the 

neighbouring cells move in the same direction, as shown in Figure 2.7. 
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Figure 2.7: Schematic illustration of the effect of the periodic boundary conditions in a three 

dimensional system. 

 

2.2.3 The Limitations of the MD Method 

 

      As with any simulation technique, MD simulations have some limitations: 

(i) The time limitation is the most common problem in MD simulations. It 

is usually within 1 µs. The simulation time should be much longer than 

the relaxation time of the quantities as systems tend to become slower 

around phase transitions [58].  

(ii) The size limitation is the second important limitation. It should be within 

the length scales ranging between 1 nm and 1 µm. Because the correlation 

lengths may increase or even diverge around phase transitions, the results 

are not reliable when they become equivalent with the size of the MD cell 

[59]. 

(iii) In MD simulations, the temperature should be above the critical 

temperature where the classical description of the atomic dynamics is 

applicable. In this case, at low temperatures the quantum effects become 

important in any system [58]. 
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2.2.4 The Interaction Model: Lennard-Jones Potential 

 

The Lennard-Jones pair potential model is a mathematical model that describes the 

potential energy 𝑈𝑈𝑖𝑖𝑖𝑖 between two particles. The potential energy changes with the 

distance between the interacting bodies  𝑟𝑟𝑖𝑖𝑖𝑖 [19, 60]: 

 

𝑈𝑈𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖� = 4𝜀𝜀 ��
𝜎𝜎
𝑟𝑟𝑖𝑖𝑖𝑖
�
12

− �
𝜎𝜎
𝑟𝑟𝑖𝑖𝑗𝑗
�
6

� ,                                                    (2.36)  

 

where, 𝑟𝑟𝑖𝑖𝑖𝑖 is the distance between the centres of two particles, 𝜎𝜎 is the finite distance and 

𝜀𝜀 is the depth of the potential well. Figure 2.8 shows the Lennard-Jones potential versus 

the separating distance (𝑟𝑟𝑖𝑖𝑖𝑖). The parameters 𝜀𝜀 and 𝜎𝜎 are chosen to fit the physical 

properties of the material [60]. The first and second terms in the right-hand side of 

Equation 2.36, (� 1
𝑟𝑟𝑖𝑖𝑖𝑖
�
12

, � 1
𝑟𝑟𝑖𝑖𝑖𝑖
�
6

), are dominated by short and large distances, 

respectively. This potential is strongly repulsive as two uncharged atoms come too close 

to each other; however, this potential is weakly attractive when they approach one 

another from a distance. Also, at the minimum of the Lennard-Jones potential, when the 

pair of atoms tend to go into a separation, distance is at equilibrium. Nevertheless, the 

depth of the well increases with the intensity of the force [19].  

 

 
 

Figure 2.8: Lennard-Jones potential (U) versus separating distance. It shows regions of 

attraction and repulsion. R is the distance between the centres of two particles, σ is the chosen 

finite distance and ε is the depth of the potential well. 

 

http://en.wikipedia.org/wiki/Potential_well
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2.2.5 The Embedded-Atom Method (EAM) 

 

Introduced by Daw and Baskes in 1984 [40], the EAM is a semi-empirical method21 that 

describes the energy between atoms. As each atom embeds in a host lattice including all 

other atoms, they nominated the theory of the embedded-atom method [40]. The EAM 

is generally used in several different types of calculations, such as MD, Monte Carlo, 

and energy minimization  [61]. 

In the EAM formalism, the potential energy of an atom i, is defined as: 𝐸𝐸𝑖𝑖 =

𝐹𝐹𝛼𝛼�∑ 𝜌𝜌𝛽𝛽𝑖𝑖≠𝑗𝑗 �𝑟𝑟𝑖𝑖𝑖𝑖�� + 1
2
∑ ∅𝛼𝛼𝛼𝛼�𝑟𝑟𝑖𝑖,𝑗𝑗�𝑖𝑖≠𝑗𝑗 , where 𝑟𝑟𝑖𝑖,𝑗𝑗 is the distance between atom i and j, ∅𝛼𝛼𝛼𝛼 

is a pair-wise potential function, 𝜌𝜌𝛽𝛽 is the electron density from atom j of type 𝛽𝛽 at 

location of atom i, 𝐹𝐹𝛼𝛼 is the embedding function for type 𝛼𝛼, and 𝛼𝛼 and 𝛽𝛽 are the element 

types of atoms i and j, respectively [62]. This equation describes that the interaction 

energy between two atoms depends on the distance between them and the environment 

around them [63]. 

In the form of embedding energy, 𝐹𝐹𝛼𝛼�∑ 𝜌𝜌𝛽𝛽𝑖𝑖≠𝑗𝑗 �𝑟𝑟𝑖𝑖𝑖𝑖��, the EAM presents a proper 

definition of the volume dependent energy that is added in the pair-potential theory to 

define the elastic properties of metals [63]. 

 

2.2.6 The Direct Method  

 

The direct method is a non-equilibrium method that calculates the thermal conductivity 

from the ratio of a heat flux and temperature gradient (𝑘𝑘 = −𝑄𝑄 ⁄ (𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕)). In this 

method, two types of simulation cell can be used: with either fixed or periodic boundary 

conditions. A fixed end boundary is divided into Ns equal slabs and it is suitable for 

finite-sized structures where heat flows in one direction from the hot slab to the cold 

slab. For periodic boundary conditions, the simulation cell is broken into Ns equal slabs 

perpendicular to the x direction and they are repeated periodically. As shown in Figure 

2.9, the hot slab is located at the centre part of this box (0) and cold slabs are located at 

                                                           
21 Semi-empirical methods are based on the Hartree-Fock formalism by introducing functions with 
empirical data. 



Chapter 2: Background and Literature Review 
 

53 
 

Ns/2 and –Ns/2. Thermal energy is transferred from the hot slab to the cold slab [4]. The 

simulation cells consist of tens or hundreds of thousands of atoms that need a hundred 

thousand time steps for converging. The direct method predicts the thermal conductivity 

directly from the simulation in one direction and is an appropriate method for studying 

finite structures such as thin films [2]. 

 

                                      

                                         (a)                                                                           (b) 

Figure 2.9: (a) Schematic diagram of the periodic simulation cell used in the non-equilibrium 

method. Hot slab (0) and cold slabs (at Ns/2 as well as at −Ns/2) are shown in red and blue 

colours, respectively. There is a heat flow out from both sides of the hot slab. (b) Schematic 

diagram of the fixed boundary condition.  

 

2.2.7 The Green-Kubo Method  

 

Equilibrium MD simulations can also be used to compute the thermal conductivity of 

materials [1, 3, 64, 65]. It has been demonstrated that equilibrium MD, combined with 

the Green-Kubo formalism, is an effective method to estimate thermal conductivity and 

to also calculate the phonon transport properties of materials. A brief overview of the 

application of this method is given below. 

 In the Green-Kubo method, which is based on an equilibrium system for an 

isotropic material, the thermal conductivity, k, is given in terms of the time integral of 

the HCACF, 〈𝑱𝑱(𝑡𝑡)𝑱𝑱(0)〉  by Equation 2.37 [66]: 

 

𝑘𝑘 =
1

3𝑉𝑉𝑘𝑘𝐵𝐵𝑇𝑇2
� 〈𝑱𝑱(𝑡𝑡)𝑱𝑱(0)〉𝑑𝑑𝑑𝑑,
∞

0
                                                  (2.37) 
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where, 𝑉𝑉 is the volume of the simulation cell, 𝑘𝑘B is the Boltzmann constant, 𝑇𝑇 is the 

absolute temperature, 𝑱𝑱 is the heat current vector and 𝑡𝑡 is the time. In general, the heat 

current vector is described by the following equation: 

 

𝑱𝑱 =
𝑑𝑑
𝑑𝑑𝑑𝑑
��𝑒𝑒𝑖𝑖𝒓𝒓𝑖𝑖

𝑖𝑖

� = �𝑒𝑒𝑖𝑖𝒗𝒗𝑖𝑖
𝑖𝑖

+ �𝒓𝒓𝒊𝒊
𝑖𝑖

𝑑𝑑𝑒𝑒𝑖𝑖
𝑑𝑑𝑑𝑑

,                              (2.38) 

 

where, the summations are over the atoms in the system, and 𝑒𝑒𝑖𝑖, 𝒓𝒓𝑖𝑖, 𝒗𝒗𝑖𝑖 are the total 

energy, radius-vector and velocity vector of the i-th atom, respectively. The first term in 

Equation 2.38 on the right side is associated with convection, whilst the second is 

associated with conduction. The implementation of the Green-Kubo method has no 

effect on the atomic dynamics and the system temperature is uniform and constant. In 

addition, this elegant but time consuming method allows for the calculation of the 

temperature dependence of the thermal conductivity. Furthermore, one can use 

equilibrium MD simulations to investigate the phonon dynamics, for example, by 

analysing the HCACF [2].  

 

2.2.8 Overview of Previous Works  

 

MD simulation was introduced by Alder and Wainwright at Lawrence Livermore 

National Laboratory [67]. They used a “hard sphere”22 model that described their 

dynamic properties without approximations. This was the first time the molecular 

simulation technique was used [67]. Rahman then used the Lennard-Jones potential 

function to define the potential interaction in argon (Ar) particles, and this algorithm has 

been used in many molecular dynamic simulation codes [68]. It was clearly shown that 

the phase space trajectories of atoms or molecules can be computed by molecular 

dynamics [69]. 

The Green-Kubo method has been successfully used to calculate the thermal 

conductivity of some materials during the last decades [1-3, 65]. Ladd et al. [65] 

                                                           
22 The hard sphere model is a perfect model of atoms motions in a container. 
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considered a f.c.c. crystal model that used MD and the Green-Kubo method to compute 

thermal conductivity. They also calculated the lifetimes of all the phonons using MD 

and developed a harmonic perturbation theory23 in order to determine the thermal 

conductivity. They found that the results of the Green-Kubo method complied with the 

phonon perturbation theory at low temperature. It was also the first time that the Green-

Kubo method was used to calculate thermal conductivity in three dimensional solids. In 

addition, He et al. [4] investigated the heat transport in bulk silicon (Si), germanium (Ge) 

and silicon germanium (SiGe) alloys using equilibrium molecular dynamics and the 

Boltzmann Transport Equation, with 105−106 atoms in the temperature range close to 

or above the Debye temperature. Consequently, their results showed that the equilibrium 

MD was a strong method to describe the thermal transport at high temperature conditions 

close to the Debye temperature [4]. Moreover, equilibrium MD simulations also provide 

a detailed atomistic interpretation of the different contributions to the conductivity. In 

addition, Tretiakov and Scandolo [64] and Sellan et al. [70] studied the system size 

effects in the MD thermal conductivity predictions. They found that the size effects in 

the thermal conductivity were negligible. Schelling et al. [71] used non-equilibrium and 

equilibrium MD simulations to predict the thermal conductivity of silicon. They found 

that there is a good agreement between the two techniques at a temperature of 1000K.  

In the last decade, McGaughey and Kaviany [1] investigated the thermal 

conductivity of Ar by using MD simulations with the Green-Kubo method. Their results 

showed that, at low temperature, the HCACF has two stages of decay. This was first 

observed in the HCACF in MD simulations [65]. McGaughey and Kaviany [1, 2] fitted 

the HCACF to a sum of two exponential functions as suggested by Che et al. [72]:  

 

1
3
〈𝑱𝑱(𝑡𝑡)𝑱𝑱(0)〉 = 𝐴𝐴1exp �

−𝑡𝑡
𝜏𝜏1
� + 𝐴𝐴2𝑒𝑒𝑒𝑒𝑒𝑒 �

−𝑡𝑡
𝜏𝜏2
� ,                                (2.39) 

 

where, 〈… 〉 means an average taken at the thermodynamic equilibrium,  𝑱𝑱 is the 

microscopic heat current vector per unit volume, 𝑡𝑡 is the time, 𝜏𝜏1 and 𝜏𝜏2 are the time 

                                                           
23 Perturbation theory is a set of approximation schemes that are related to mathematical perturbation for 
describing a complicated quantum system in a simpler condition. 
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constants, and 𝐴𝐴1 and 𝐴𝐴2 are the strengths, while the subscripts “1” and “2” refer to the 

acoustic short- and long-range phonons, respectively. McGaugey and Kaviany [1, 2] 

interpreted the two-stage behaviour of the HCACF of f.c.c. Ar in the context of the 

phonon mean free path (or its temporal representation – the mean phonon relaxation 

time). The first and second terms on the right side of Equation 2.39 describe two time 

scales of the decay, which are associated with the acoustic short- and long-range 

phonons respectively (optical phonons cannot be present, as the unit cell is monatomic). 

Physically, the lower bound on the mean free path is given by half of the phonon 

wavelength, known as the Cahill and Pohl limit [1, 2, 73]. Hence, according to [1, 2], 

the first time scale in the HCACF decomposition, described by the mean phonon 

relaxation time 𝜏𝜏1, corresponds to those phonons with a mean free path equal to one half 

of their wavelength. The second time scale, described by the mean phonon relaxation 

time 𝜏𝜏2, is longer, and corresponds to the acoustic phonons with mean free paths longer 

than one half of their wavelength [10,14]. With Equations 2.37 and 2.39 in hand, the 

thermal conductivity is given by: 

 

𝑘𝑘𝑝𝑝ℎ =
1

𝑉𝑉𝑘𝑘𝐵𝐵𝑇𝑇2
(𝐴𝐴1𝜏𝜏1 + 𝐴𝐴2𝜏𝜏2) = 𝑘𝑘1 + 𝑘𝑘2,                                (2.40) 

 

McGaughey and Kaviany [1, 2] pointed out that in the decomposition given by 

Equation 2.40, all of the temperature dependence of the thermal conductivity is 

contained in 𝑘𝑘2, while the short-range component, 𝑘𝑘1, shows little temperature 

dependence. These authors also argued [1, 2] that phonons with a mean free path of the 

order of their wavelengths (as assumed for the acoustic short-range phonons) should 

have wavelengths of the order of a few atomic spacing, i.e., they are supposed to be in 

the higher frequency range of the acoustic branches. This suggests that 𝜏𝜏1 and 𝑘𝑘1 should 

be strong functions of the coordination of the atoms [1, 2]. Thus, the small temperature 

dependence of 𝑘𝑘1 is a result of the coordination of the atoms remaining constant as the 

density changes with temperature. Overall, the predicted temperature dependence of the 

thermal conductivity of the MD model of the f.c.c. Ar was found to be in agreement with 

the trend and magnitude of the experimental data [1, 2] .  
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Using the Lennard-Jones pair potential with a longer cut-off radius, Kaburaki et 

al. [3] also demonstrated that the temperature dependence of the experimentally 

measured thermal conductivity of f.c.c. Ar can be reproduced with good accuracy by the 

equilibrium MD simulation in conjunction with the Green-Kubo method. In addition, 

the authors [3] found that the absolute values of the thermal conductivity and the two-

stage relaxation of the HCACF are in agreement with the results reported by McGaughey 

and Kaviany [1, 2]. However, Kaburaki et al. [3] differ from the previous authors [1, 2] 

in the interpretation and analysis of the HCACF. They attribute the first-stage of 

relaxation to the single-particle motions sampling the local environment of the system, 

whereas McGaughey and Kaviany [1, 2] regard this relaxation to be associated with the 

short wavelength acoustic phonons, as mentioned above. Furthermore, Kaburaki et al. 

[3] pointed out that the first stage of relaxation is not properly described by a single 

exponential function. Indeed, they observed a slight plateau (shoulder) for short times at 

low and intermediate temperatures, which had not been noted previously. The authors 

[3] suggested that it may be associated with the collective oscillations, possibly of a 

transverse or shear nature, and highly damped. Nonetheless, Kaburaki et al. [3] also 

expect that, overall, the first stage of the relaxation of the HCACF will be relatively 

insensitive to temperature because the local environment surrounding a particle does not 

change much, even when the system goes from a low-temperature solid to the liquid 

phase and loses long-range ordering. Regarding the second stage of the relaxation of the 

HCACF, Kaburaki et al. [3] are in agreement with McGaughey and Kaviany [10,14] that 

the underlying process is the lattice vibrations or the phonons. According to [3], this part 

is also expected to be sensitive to temperature variations because long-range ordering is 

needed to sustain the collective motions.  

Thus, the commonly accepted main feature of the HCACF of f.c.c. Ar predicted 

by the equilibrium MD simulation with the Lennard-Jones pair potential is a two-stage 

decay (relaxation) [1-3]. This was in contrast to the Peierls theory of thermal 

conductivity, which is consistent with a single-stage decay of the HCACF [1-3, 65]. 

Ladd et al. [65] quantitatively examined the approximations involved in deriving the 

Peierls phonon-transport expression for the lattice thermal conductivity. They 

demonstrated that the Peierls expression of the heat current is only an approximation to 

the full atomistic Irving-Kirkwood expression [74], which disregards the short-time 

contribution to the HCACF. Unfortunately, no results could be found in the literature 
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regarding phonon thermal conductivity calculations in metals within the framework of 

the EAM using equilibrium MD simulations in conjunction with the Green-Kubo 

formalism. However, aside from the aforementioned importance of knowledge of the 

phonon thermal conductivity in problems dealing with predicting the kinetics properties 

of interfaces in metals using classical MD simulations, it is of fundamental interest to 

investigate the phonon dynamics in an EAM potential model by analysing its HCACF 

in comparison with the HCACF of the Lennard-Jones pair potential model of argon. 
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Chapter 3: Research Methodology 
 

Following on from the discussion in Chapter 1, a fundamental understanding of the 

generic features of the lattice thermal conductivity and phonon dynamics can be 

advanced, in particular, by a systematic MD study of the HCACF of a set of high-quality 

models of isostructural materials with a simple crystal lattice. An appropriate choice for 

this study is a set of MD models of f.c.c. metals such as Cu, Ni, Al, and Ag. The choice 

was mostly determined by the availability of state-of-the-art first principles-based many 

body potentials developed for these metals within the framework of the EAM [5-8]. In 

this research, the interaction between the atoms in the MD model of f.c.c. Ni are 

described by using two different EAM interatomic potentials developed by Mishin  et 

al.. The first one nominated was NiEAM1 (published in 1999) [7], and the second was 

NiEAM2 (published in 2004) [6]. 

 In general, the total energy of an atom i is represented in the EAM model [5]as:  

 

𝑒𝑒𝑖𝑖 =
1
2
𝑚𝑚𝑖𝑖𝑣𝑣𝑖𝑖2 + 𝐹𝐹𝜇𝜇𝜇𝜇(𝜌̅𝜌𝑖𝑖) +

1
2
� 𝑉𝑉𝜇𝜇𝑖𝑖𝜇𝜇𝑗𝑗�𝑟𝑟𝑖𝑖𝑖𝑖�,      
𝑗𝑗(≠𝑖𝑖)

                                   (3.1) 

 

in this equation the 1
2
𝑚𝑚𝑖𝑖𝑣𝑣𝑖𝑖2 describes the kinetic energy, where 𝑚𝑚𝑖𝑖 is the mass of the atom, 

𝑣𝑣𝑖𝑖  is the absolute value of the velocity vector of the atom, 𝐹𝐹𝜇𝜇𝑖𝑖(𝜌̅𝜌𝑖𝑖) is the embedding 

energy of the atom as a function of the host electron density 𝜌̅𝜌𝑖𝑖 induced at site i by all 

other atoms in the system, and 𝑉𝑉𝜇𝜇𝑖𝑖𝜇𝜇𝑗𝑗�𝑟𝑟𝑖𝑖𝑖𝑖� is the pair interaction potential as a function of 

the distance 𝑟𝑟𝑖𝑖𝑖𝑖 between atoms i and j (𝜇𝜇𝑖𝑖 and 𝜇𝜇𝑗𝑗 indicate whether the functional form 

for the species of atom i or atom j are used). The host electron density 𝜌̅𝜌𝑖𝑖 is given by: 

 

𝜌̅𝜌𝑖𝑖 = � 𝜌𝜌𝜇𝜇𝜇𝜇(𝑟𝑟𝑖𝑖𝑖𝑖
𝑗𝑗(≠𝑖𝑖)

),                                                                  (3.2) 

 



Chapter 3: Research Methodology 
 

60 
 

where, 𝜌𝜌𝜇𝜇𝑗𝑗�𝑟𝑟𝑖𝑖𝑖𝑖� is the electron density induced by an atom j at the location of atom i. In 

particular, for a monatomic system this model involves three potential functions, 𝐹𝐹(𝜌̅𝜌), 

𝑉𝑉(𝑟𝑟) and 𝜌𝜌(𝑟𝑟), which can be treated as some fitting functions that have to be reasonably 

parameterized. In this work, the interactions between atoms in the MD model of f.c.c. 

metals are described by using an EAM potential developed by Mishin et al. [5-8]. The 

potential functions were obtained by fitting to the experimental and first principles data. 

This potential accurately reproduced the lattice parameter, cohesive energy, elastic 

constants, phonon frequencies, thermal expansion, lattice-defect energies, and other 

relevant properties of the metals. The melting temperature of Cu, Al, NiEAM2 and Ag 

predicted by this potential were 1327 K, 1042 K, 1701 K and 1267 K, which were in 

good agreement with the experimental values of 1357 K, 933 K, 1728 K and 1235 K, 

respectively [75].  

Following on from Equations 2.38, 3.1 and 3.2, the Cartesian components of the 

heat current vector in a system using an EAM Potential model can be represented as [76, 

77]: 

 

𝑱𝑱𝑞𝑞𝑞𝑞 =
1
𝑉𝑉
𝑑𝑑
𝑑𝑑𝑑𝑑
��𝑒𝑒𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑖𝑖

� =
1
𝑉𝑉
�𝑒𝑒𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 −
𝑖𝑖

1
𝑉𝑉
�Ω𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖

(𝑝𝑝)𝑣𝑣𝑖𝑖𝑖𝑖
𝑖𝑖

,                            (3.3) 

 

where: 

 

𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖
(𝑝𝑝)𝛺𝛺𝑖𝑖 = � �

𝜕𝜕𝐹𝐹𝜇𝜇𝜇𝜇(𝜌̅𝜌𝑖𝑖)
𝜕𝜕𝜌̅𝜌𝑖𝑖

𝜕𝜕𝜌𝜌𝜇𝜇𝜇𝜇(𝑟𝑟𝑖𝑖𝑖𝑖)
𝜕𝜕𝑟𝑟𝑖𝑖𝑖𝑖

+
1
2
𝜕𝜕𝑉𝑉𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑟𝑟𝑖𝑖𝑖𝑖)

𝜕𝜕𝑟𝑟𝑖𝑖𝑖𝑖
�
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖𝑗𝑗(≠𝑖𝑖)

,                      (3.4) 

 

Ω𝑖𝑖 is the volume of atom i, the symbols 𝛼𝛼 and 𝛽𝛽 enumerate the Cartesian components of 

the vectors and tensors: 𝑥𝑥𝑖𝑖𝑖𝑖, 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 (or 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖) and 𝑣𝑣𝑖𝑖𝑖𝑖  (or 𝑣𝑣𝑖𝑖𝑖𝑖 ) are the components of the 

vectors 𝒓𝒓𝑖𝑖, 𝒓𝒓𝑖𝑖𝑖𝑖 and 𝒗𝒗𝑖𝑖, respectively, while 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖
(p)  denotes the potential energy contribution 

to the components of the stress tensor of atom i. For symbols that enumerate the 

Cartesian components of the vectors and tensors, the Einstein summation notation is 

implied. 
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In this study, a wide temperature range for each metal was considered (see Table 

3.1 for details). It has previously been argued [72] that the dominant contributors to the 

thermal transport in crystals are the long wavelength phonons which are active even at 

low temperatures. Moreover, there is no evidence to support the use of quantum 

corrections with the classical MD thermal conductivity predictions at relatively low 

temperatures, up to around one-tenth of the Debye temperature [2]. This is in contrast to 

the specific heat, where the high-frequency (short wavelength) modes become excited 

as the temperature of the quantum system is increased, leading to a significant 

temperature dependence up to the Debye temperature [2, 72].  

All the reported data were averaged over the MD simulations in the NPT 

(isothermal-isobaric), NVT (canonical) and NVE (microcanonical) ensembles at zero 

pressure. A Nosé-Hoover thermostat was used for the NPT and NVT ensembles and a 

Nosé-Hoover barostat was used for the NPT ensemble. The cubic simulation block was 

composed of 4000 atoms with periodic boundary conditions in all three directions. The 

MD simulations were started in the NPT ensemble. The obtained equilibrium (zero 

pressure) value of the system volume at each temperature was subsequently used as an 

input for the MD simulations in the NVT and NVE ensembles. The obtained temperature 

dependences of the equilibrium (zero pressure) atomic volumes Ω = 𝑉𝑉 𝑁𝑁⁄  of the f.c.c. 

Cu, Al, NiEAM1, NiEAM2 and Ag models are shown in Figure 3.1. The atomic volume 

versus temperature data can be satisfactorily fitted by the equation: 

 

Ω = Ω0 + 𝛼𝛼Ω𝑇𝑇 + 𝛽𝛽Ω𝑇𝑇2,                                                        (3.5) 

 

with the parameters introduced in Table 3.2. 
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Table 3.1: Temperature ranges for f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag. 

Metals Temperature (K) Temperature Step 

Cu 40-1300 
10 K in temperature range 40-100 K 

100 K in temperature range 100-1300 K 

NiEAM1, NiEAM2 100-1700 100 K 

Al 100-1000 100K 

Ag 40-1200 
10 K in temperature range 40-100 K 

100 K in temperature range 100-1200 K 

 

 

 

Table 3.2: Atomic volume parameters for the quadratic equations (see Equation 3.5) in the cases 

of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag. 

 
Ω0  

�
𝑛𝑛𝑛𝑛3

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�
 

𝛼𝛼Ω 

�
𝑛𝑛𝑛𝑛3𝐾𝐾−1

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � 

𝛽𝛽Ω 

�
𝑛𝑛𝑛𝑛3𝐾𝐾−2

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � 

Cu 11.81×10-3 4.8×10-7 1.6×10-10 

NiEAM1 10.92×10-3 3.1×10-7 5.7×10-11 

NiEAM2 10.9×10-3 1.97×10-7 1.03×10-10 

Al 16.61×10-3 5.01×10-7 4.04×10-10 

Ag 17.1×10-3 9.64×10-7 2.18×10-10 
 

 

Metals 

Parameters 
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Figure 3.1: Temperature dependence of the equilibrium atomic volumes of the EAM potential 

models [5-8] of f.c.c. (a) Cu, (b) Al, (c) NiEAM1, (d) NiEAM2, and (e) Ag  according to the MD 

simulations of the NPT ensemble. The solid line shows the fit of the MD data by Equation 3.5. 

 

After the equilibration of the system at a given temperature by performing a run 

of 150 ps (105∆𝑡𝑡, ∆𝑡𝑡=1.5fs is the time-step), the HCACF was calculated during a 

production run. The length of the production run, as well as the correlation length and 

the number of time origins used in the HCACF calculations, were varied depending on 

the temperature (see Table 3.3 for details). This is because the time of the HCACF decay 

increases as the temperature decreases. It should be noted that, in order to set a given 

temperature for the NVE ensemble, the first 75ps (5×104∆𝑡𝑡) of the equilibration run 

were always done in the NVT ensemble. 
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Table 3.3: Details of the HCACF calculations. 

Metals 
Temperature 

(K) 

Length of 

production run 

(ps) 

Correlation length 

(ps) 

Number of time 

origins 

Cu 

40 – 90 15000 150 ∼106 

100 – 200 15000 75 ∼106 

300 3000 30 ∼2×105 

400 – 1300 1500 15 ∼105 

Al 

100 15000 75 ∼107 

200-300 15000 30 ∼107 

400-1000 15000 15 ∼107 

NiEAM1 
100-300 15000 30 ∼107 

400-1700 15000 15 ∼107 

NiEAM2 

100 15000 150 ∼107 

200-300 15000 60 ∼107 

400-600 15000 30 ∼107 

700-1700 15000 15 ∼107 

Ag 

40-90 15000 150 ∼107 

100-300 15000 30 ∼107 

300-1200 15000 15 ∼107 

 

According to the Debye theory, the shortest wavelength 𝜆𝜆D that can be propagated 

through a lattice is (4𝜋𝜋Ω 3⁄ )1 3⁄ , where Ω is the atomic volume [21]. For an f.c.c. lattice 

with a lattice constant (𝑎𝑎), we have Ω = 𝑎𝑎3 4⁄ , so that: 

 

𝜆𝜆𝐷𝐷 = �
𝜋𝜋
3
�
1 3⁄

𝑎𝑎                                                                         (3.6) 

 

Then, the Debye frequency can be estimated as: 
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𝜔𝜔𝐷𝐷 =
2𝜋𝜋𝜋𝜋
𝜆𝜆𝐷𝐷

                                                                         (3.7) 

 

where 𝑠𝑠 is the average speed of sound (or phonon speed). Next, in the Debye 

approximation, the average speed of sound 𝑠𝑠𝛿𝛿 in a given direction 𝛿𝛿 of a crystal can be 

assessed as the harmonic mean of both the cubes and squares (see Equations 3.8 and 3.9 

[21]) of the speeds of sound for longitudinal and transvers polarizations. 

 

3
𝑠𝑠𝛿𝛿3

=
1
𝑠𝑠𝑙𝑙,𝛿𝛿3

+
1
𝑠𝑠𝑡𝑡1,𝛿𝛿
3 +

1
𝑠𝑠𝑡𝑡2,𝛿𝛿
3 ,                                                                     (3.8) 

 

3
𝑠𝑠𝛿𝛿2

=
1
𝑠𝑠𝑙𝑙,𝛿𝛿2

+
1
𝑠𝑠𝑡𝑡1,𝛿𝛿
2 +

1
𝑠𝑠𝑡𝑡2,𝛿𝛿
2 ,                                                                     (3.9) 

 

where 𝑠𝑠𝑙𝑙,𝛿𝛿, 𝑠𝑠𝑡𝑡1,𝛿𝛿 and 𝑠𝑠𝑡𝑡2,𝛿𝛿 are the phonon speeds of the longitudinal mode and the two 

transverse modes, respectively, in the given direction 𝛿𝛿. Normally, the longitudinal 

mode has the highest speed, while the two transverse modes have lower speeds. This 

reflects the fact that the longitudinal mode is essentially a compression wave, for which 

the elastic restoring forces are stronger than for the transverse (or shear) waves [21]. The 

phonon speeds of the three modes in three low-index directions [100], [110] and [111] 

in a cubic crystal are given by [21]: 

 

𝑠𝑠𝑙𝑙,[100] = �
𝐶𝐶11
𝜌𝜌

,       𝑠𝑠𝑡𝑡1,[100] = 𝑠𝑠𝑡𝑡2,[100] = �
𝐶𝐶44
𝜌𝜌

                             (3.10) 

   

in the [100] direction: 
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𝑠𝑠𝑙𝑙,[110] = �
𝐶𝐶11 + 𝐶𝐶12 + 2𝐶𝐶44

2𝜌𝜌
,          𝑠𝑠𝑡𝑡1,[110] = �

𝐶𝐶44
𝜌𝜌

,        𝑠𝑠𝑡𝑡2,[110] = �
𝐶𝐶11 − 𝐶𝐶12

2𝜌𝜌
    

 

(3.11) 

 

in the [110] direction, and 

 

𝑠𝑠𝑙𝑙,[111] = �
𝐶𝐶11 + 2𝐶𝐶12 + 4𝐶𝐶44

3𝜌𝜌
,       𝑠𝑠𝑡𝑡1,[111] = 𝑠𝑠𝑡𝑡2,[111] = �

𝐶𝐶11 − 𝐶𝐶12 + 𝐶𝐶44
3𝜌𝜌

           

(3.12) 

 

in the [111] direction. In Equations 3.10 – 3.12, 𝐶𝐶11, 𝐶𝐶12 and 𝐶𝐶44 are the elastic constants 

and 𝜌𝜌 is the mass density. The following calculations estimate the average phonon speed 

in the f.c.c. Cu, Al, Ni and Ag models as: 

 

𝑠𝑠 =
1
3
�𝑠𝑠[100] + 𝑠𝑠[110] + 𝑠𝑠[111]�,                                                             (3.13) 

 

where  𝑠𝑠[100], 𝑠𝑠[110] and 𝑠𝑠[111] are the average phonon speeds in the three low-index 

directions [100], [110] and [111], respectively, as determined by Equations 3.8 and 3.9, 

using Table 3.4. Finally, using Equations 3.6, 3.4 and 3.13, we can estimate the Debye 

temperature of the MD models for f.c.c. Cu, Al, Ni and Ag as: 

 

𝑇𝑇𝐷𝐷 =
ℏ𝜔𝜔𝐷𝐷

𝑘𝑘𝐵𝐵
,                                                                                  (3.14) 

 

where, ℏ is the Planck constant divided by 2𝜋𝜋 (reduced Planck constant) (see details in 

Table 3.5).  
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Table 3.4: The elastic properties of f.c.c. Cu, Al, Ni and Ag according to Mishin et al. [5-8], 

Debye wavelength and the phonon speeds of the longitudinal mode and two transverse modes 

in three direction for f.c.c. Cu, Al, Ni and Ag. 

Parameters Units Cu Al Ni Ag 

𝑎𝑎 Å 3.615 4.05 3.52 4.09 

𝐶𝐶11 GPa 169.9 114 247 124.2 

𝐶𝐶12 GPa 122.6 61.6 148 93.9 

𝐶𝐶44 GPa 76.2 31.6 125 46.4 

𝜆𝜆𝐷𝐷 Å 3.671 4.113 3.575 4.153 

𝑠𝑠𝑙𝑙,[100] km/s 4.36 6.501 5.26 3.44 

𝑠𝑠𝑡𝑡1,[100] km/s 2.92 3.42 3.74 2.11 

𝑠𝑠𝑡𝑡2,[100] km/s 2.92 3.42 3.74 2.11 

𝑠𝑠𝑙𝑙,[110] km/s 4.99 6.65 6.01 3.85 

𝑠𝑠𝑡𝑡1,[110] km/s 2.92 3.42 3.74 2.11 

𝑠𝑠𝑡𝑡2,[110] km/s 1.63 3.12 2.35 1.203 

𝑠𝑠𝑙𝑙,[111] km/s 5.18 6.703 6.24 3.98 

𝑠𝑠𝑡𝑡1,[111] km/s 2.15 3.22 2.89 1.56 

𝑠𝑠𝑡𝑡2,[111] km/s 2.15 3.22 2.89 1.56 

 

Table 3.5: The average speed of sound, Debye frequency and Debye temperature of f.c.c. Cu, 

Al, Ni and Ag for the first and second cases. All quantities presented in this table are introduced 

in the text. 

Quantities Units 

Cu Al Ni Ag 

Cube 

Eq 

Square 

Eq 

Cube 

Eq 

Square 

Eq 

Cube 

Eq 

Square 

Eq 

Cube 

Eq 

Square 

Eq 

𝑠𝑠[100] km/s 3.19 3.23 3.83 3.93 4.05 4.09 2.32 2.37 

𝑠𝑠[110] km/s 2.2 2.37 3.66 3.77 3.1 3.27 1.62 1.75 

𝑠𝑠[111] km/s 2.43 2.52 3.62 3.74 3.25 3.36 1.77 1.84 

𝑠𝑠 km/s 2.61 2.71 3.7 3.81 3.47 3.58 1.91 1.99 

𝜔𝜔𝐷𝐷 THz 44.6 46.34 56.6 58.2 61 62.9 28.8 30 

𝑇𝑇𝐷𝐷 K 341 354 432 445 466 481 220 229 
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The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 

was used in this work to carry out the molecular dynamic simulations. The fundamental 

structure of the MD simulation is shown in the following flowchart (see Figure 3.2): 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Basic structure of the MD simulation. 

 

As a sensitivity test of the system size, calculations were also performed with the 

cubic simulation block composed of 32,000 atoms (it has a two times longer side length) 

at various temperatures. The results will be explained in the following chapters.  
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Chapter 4: The Heat Current Autocorrelation 

Function (HCACF) 
 

Figure 4.1 shows, as an example, the HCACF calculated over wide temperature ranges 

(see Table 3.1) for the NPT, NVT and NVE ensembles, as well as averaged over the three 

ensembles. Each curve was normalized by its zero time value to allow for a comparison 

between the different temperatures. It can be seen that all four curves sit very close to 

each other at all temperatures. This fact is reassuring that the calculations in all three 

ensembles are equivalent.  

The temporal decay of the HCACF of the f.c.c. (a) Cu, (b) Al, (c) NiEAM1, (d) 

NiEAM2 and (e) Ag models (see Figure 4.1) at low and intermediate temperatures showed 

a more complex behaviour than the two-stage decay observed in [1, 2] for the HCACF 

of the f.c.c. Ar model, which was described by two exponential functions (see Equation 

2.39).  

In Figure 4.1(a), the first stage of the HCACF of the f.c.c. Cu model is an initial 

rapid decay of up to 0.2 - 0.25 ps, which is similar to the first stage of the HCACF decay 

of the f.c.c. Ar model [1, 2]. This stage was followed by a peak of around 0.5 ps in the 

temperature range 40 - 800 K. The intensity of the peak decreased as the temperature 

increased. At 900 K, it transformed to a shoulder which diminished almost entirely at 

1200 K. Thus, at very high temperatures, of above 1200 K, the first stage decay was 

directly followed by a longer second stage decay. As a result, in the temperature range 

900 - 1100 K, indicating a shoulder after the first decay, the HCACF of the f.c.c. Cu 

model is similar to the HCACF of the f.c.c. Ar model in [3] at low and intermediate 

temperatures. It was surmised that the peak found in the f.c.c. Cu model was related to 

the transition between the two stages of the heat dissipation. It may be activated by the 

influence of the positive (non-zero) Cauchy pressure 𝐶𝐶12 − 𝐶𝐶44 ≈ 46.4 GPa in f.c.c. Cu 

[5] on the phonon dynamics. As mentioned above, the longitudinal phonons are 

essentially compression waves, so that the positive Cauchy pressure may affect their 

scattering whilst not affecting (or affecting much less) the scattering of the transverse 

phonons which are shear waves. In any case, since a rise of the HCACF after the first 

stage of the heat dissipation was observed, it was assumed that due to the positive 
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Cauchy pressure, either the scattering of the acoustic long-range phonons slows down 

or the scattering of the acoustic short-range phonons accelerates, or both processes take 

place. This is stated here simply as a suggestion without any justification. A verification 

of the proposition can be carried out during a systematic MD study of the HCACF of a 

monatomic f.c.c. crystal with a pair potential which uses an accompanying volume-

dependent energy to manage the elastic properties of the model [40]. By varying the 

volume-dependent energy, one can find the dependence of the HCACF on the Cauchy 

pressure. Another approach would be to carry out a systematic MD study of the HCACF 

of a monatomic f.c.c. crystal with an EAM potential. It is known that for an elemental 

crystal, the Cauchy pressure is determined by the curvature of the embedding energy at 

equilibrium [40]. Hence, by varying the curvature, one can also find the dependence of 

the HCACF on the Cauchy pressure. These types of studies could provide a more 

scientific grounding for the proposition. These areas are expected to be the subjects of 

future work in this direction but lie beyond the scope of the present research.  

A two-stage decay of the HCACF of the f.c.c. Al model (see Figure 4.1(b)) was 

also observed. Namely, an initial rapid decay of the HCACF of up to 0.17 - 0.2 ps was 

followed by a peak of around 0.29 - 0.34 ps. The intensity of the peak decreased as the 

temperature increased. This peak persisted up to temperatures close to the melting 

temperature of the f.c.c. Al model, while a similar peak on the HCACF of the f.c.c. Cu 

model was observed to transform to the shoulder at high temperatures. 

As observed for the f.c.c. Cu and Al models, a two-stage decay of the HCACF of 

the f.c.c. NiEAM1 and NiEAM2  models (for two EAM interatomic potentials [6, 7]) was 

found (see Figures 4.1(c) and 4.1(d)). At low and intermediate temperatures, an initial 

rapid decay of the HCACF of up to 0.2 - 0.22 ps was followed by a peak of around 0.45 

- 0.5 ps below 1300 K. The intensity of the peak decreased as the temperature increased. 

At high temperatures, above 1300 K, it transformed to a shoulder which tended to 

gradually diminish at higher temperatures. Furthermore, in the f.c.c. Ag model (see 

Figure 4.1(e)), an initial rapid decay of the HCACF was followed by a peak of around 

0.6 - 0.75  and that the intensity of the peak decreased as the temperature increased which 

almost diminished at very high temperatures.  
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Figure 4.1: Normalized HCACF of the MD models of f.c.c. (a) Cu, (b) Al, (c) NiEAM1, (d) NiEAM2 

and (e) Ag at different temperatures for the NPT (thin solid line), NVT (dashed line), and NVE 

(dot-dashed line) ensembles, as well as averaged over the three ensembles (red solid line). 
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In additional studies, an effect of the size of the simulation cell on the shape of the 

HCACF was observed. In particular, Figure 4.2 gives the comparison of the HCACFs 

of the f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag models at temperatures predicted from the 

simulation blocks containing 4,000 and 32,000 atoms. As can be seen in Figure 4.2, in 

both cases a good agreement between the calculations can be observed. This comparison 

is an additional confirmation of the reliability of the results. 
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Figure 4.2: Comparison of the normalized HCACF of the MD models of f.c.c. (a) Cu, (b) Al, 

(c) NiEAM1, (d) NiEAM2 and (e) Ag calculated at three different temperatures with the simulation 

blocks containing 4,000 (black solid line) and 32,000 (blue dashed line) atoms.  
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Chapter 5: The Decomposition Model for Lattice 

Thermal Conductivity  
 

As mentioned in Chapter 4, a more complex behaviour was observed for the temporal 

decay of the HCACF of the models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag at low and 

intermediate temperatures in comparison to the two exponential functions (see Equation 

2.39). Taking into account the observed shape of the HCACF of the MD models of the 

f.c.c. for the four metals investigated at different temperatures (see Table 3.1), it was 

found that the HCACF of the models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag can be 

satisfactorily modelled with the following analytical function of the form (as shown in 

Figure 5.1): 

 

𝐶𝐶𝐽𝐽𝐽𝐽(𝑡𝑡) =
1
3
〈𝑱𝑱(𝑡𝑡)𝑱𝑱(0)〉 = 𝐴𝐴1 exp �−

𝑡𝑡
𝜏𝜏1
� cos(𝜔𝜔𝑐𝑐𝑡𝑡) + 𝐴𝐴2 �−

𝑡𝑡
𝜏𝜏2
� ,                       (5.1) 

 

where 〈… 〉 means an average taken at the thermodynamic equilibrium, 𝑱𝑱 is the 

microscopic heat current vector per unit volume, 𝜏𝜏1 and 𝐴𝐴1 are the time constant and 

strength of the first-stage relaxation, respectively. This stage is associated with the 

acoustic short-range phonons, and 𝜏𝜏2 and 𝐴𝐴2 are the time constant and the strength of 

the long-time decay of the HCACF associated with the acoustic long-range phonons, 

respectively. Finally, the 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔c𝑡𝑡) model in this equation is the transition between these 

two stages of the heat dissipation, so that the parameter 𝜔𝜔c can be described as the 

characteristic angular frequency of the phonon modes at which the crossover between 

the first and second stages of the HCACF relaxation occurs. In compliance with 

McGaughey and Kaviany [1, 2],  𝜏𝜏2  and 𝜏𝜏1, as well as 𝐴𝐴2 and 𝐴𝐴1, have the same meaning 

as in Equation 2.39. The decomposition model, introduced by Equation 5.1 (page 81), 

can capture all the characteristics of the HCACF behaviour for a monatomic f.c.c. lattice, 

as discussed in the literature. Only the acoustic phonon modes are considered in this 

study. Thus, the first and second exponential terms in Equation 5.1 (page 81) describe 

the two time scales of the decay, while the cos(𝜔𝜔𝑐𝑐𝑡𝑡) term models the transition between 

the two stages of the heat dissipation. 
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Such an interpretation of the observed HCACF relaxation is in accordance with 

Klemens’ idea [78], which suggests that for a U-process linking a low-frequency phonon 

mode 𝜔𝜔1 with the two high-frequency phonon modes 𝜔𝜔2 and 𝜔𝜔3 in the vicinity of the 

zone boundary, the requirements of energy conservation given by 𝜔𝜔1 + 𝜔𝜔2 = 𝜔𝜔3 can be 

satisfied only for the phonon modes with frequencies higher than a minimum (critical or 

threshold) frequency 𝜔𝜔𝑐𝑐, i.e. 𝜔𝜔1 ≥ 𝜔𝜔𝑐𝑐.  

Klemens also suggested that 𝜔𝜔𝑐𝑐 is approximately equal to the difference in 

frequency of the two different polarization branches (longitudinal and transverse) in the 

vicinity of the zone boundary. Thus, the low-frequency modes 𝜔𝜔 < 𝜔𝜔𝑐𝑐 cannot directly 

undergo the three-phonon U-processes. Hence, the transfer of phonon momentum from 

the low-frequency modes 𝜔𝜔 < 𝜔𝜔𝑐𝑐 must proceed in two steps (otherwise, a direct transfer 

of phonon momentum from the low-frequency modes can be realised only through their 

participation in much less feasible fourth and higher order U-processes). The first step 

is a N-process, which is always possible [79]. Such a N-process links the low-frequency 

mode to the modes of frequency 𝜔𝜔𝑐𝑐 or higher. The second step is an U-process linking 

the later intermediate-frequency modes (𝜔𝜔 ≳ 𝜔𝜔𝑐𝑐) to the high-frequency (zone-

boundary) modes. This implies that the low-frequency modes 𝜔𝜔 < 𝜔𝜔𝑐𝑐 can reach 

equilibrium only by these two steps, and that their effective relaxation time can be seen 

as a superposition of the relaxation time for the N-processes which link the low-

frequency modes to the intermediate-frequency modes and the average relaxation time 

for the U-processes (only possible if 𝜔𝜔 ≳ 𝜔𝜔𝑐𝑐) [78, 80]. Meanwhile, the intermediate- 

and high-frequency modes 𝜔𝜔 ≳ 𝜔𝜔𝑐𝑐 can reach equilibrium in one step, and their 

relaxation time is just the relaxation time for the U-processes. Furthermore, one can 

suppose that, because of the two steps, the relaxation of the low-frequency modes 𝜔𝜔 <

𝜔𝜔𝑐𝑐 (referred to as a slow relaxation process) should be separated in time from the one-

step relaxation of the intermediate- and high-frequency modes 𝜔𝜔 ≳ 𝜔𝜔𝑐𝑐 (referred to as a 

fast relaxation process). Additionally, because 𝜔𝜔𝑐𝑐 is supposed to be small (𝜔𝜔𝑐𝑐 is about 4 

- 5 times less than 𝜔𝜔𝐷𝐷, according to both the assumption attributed to Klemens [78, 80] 

and the analysis of the simulation data presented here), the relative fraction of the 

low-frequency modes 𝜔𝜔 < 𝜔𝜔𝑐𝑐 itself can be seen as a very small quantity, of the order of 

𝜔𝜔𝑐𝑐3/𝜔𝜔𝐷𝐷
3  (it can be roughly estimated about 10-2 or even less). However, to reach 

equilibrium the low-frequency modes 𝜔𝜔 < 𝜔𝜔𝑐𝑐 need to interact with the intermediate- 

and high-frequency modes 𝜔𝜔 ≳ 𝜔𝜔𝑐𝑐, so that the total fraction of the phonon modes 
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contributing towards the slow relaxation process (which is described by the second term 

in Equation 5.1 (page 81)) may be comparable with the fraction of the phonon modes 

contributing towards the fast relaxation process (which is described by the first term in 

Equation 5.1 (page 81)).  

In other words, the acoustic short- and long-range phonon modes are those 

phonon modes that contribute towards the fast and slow relaxation processes, 

respectively. According to the recently explored two-fluid nature of phonon heat 

conduction in a monatomic lattice [81], the fluctuating microscopic heat current in a 

given direction of a large enough local volume of a crystal lattice can be decomposed 

into two parts, as: 

 

𝑱𝑱 = 𝑱𝑱1 + 𝑱𝑱2,                                                                  (5.2) 

 

where, 𝑱𝑱1 and 𝑱𝑱2 are the heat currents (in the same direction) due to the acoustic short- 

and long-range phonon modes, respectively (〈𝑱𝑱〉 = 0, 〈𝑱𝑱1〉 = 0 and 〈𝑱𝑱2〉 = 0, where the 

average is taken in thermal equilibrium on the time scale of 𝑡𝑡 ≫ 𝜏𝜏2). Furthermore, if one 

assumes that there is no transfer of either energy or momentum (or it is strictly limited) 

between these two thermal motions associated with the acoustic short- and long-range 

phonon modes, then it follows that the HCACF should consist of two terms [81]: 

 

𝐶𝐶𝐽𝐽𝐽𝐽(𝑡𝑡) = 𝐶𝐶𝐽𝐽𝐽𝐽1(𝑡𝑡) + 𝐶𝐶𝐽𝐽𝐽𝐽2(𝑡𝑡),                                                      (5.3) 

 

where, 𝐶𝐶𝐽𝐽𝐽𝐽1(𝑡𝑡) = 1
3
〈𝑱𝑱(0)𝑱𝑱1(𝑡𝑡)〉 and 𝐶𝐶𝐽𝐽𝐽𝐽2(𝑡𝑡) = 1

3
〈𝑱𝑱(0)𝑱𝑱2(𝑡𝑡)〉 describe the contributions 

into the HCACF decay due to the acoustic short- and long-range phonon modes, 

respectively. Otherwise, the decomposition of the HCACF into these two contributions 

would not be possible. A simple comparison of Equations 5.1 (page 81) and 5.3 shows 

that: 

 

𝐶𝐶𝐽𝐽𝐽𝐽1(𝑡𝑡) = 𝐴𝐴1exp(−𝑡𝑡 𝜏𝜏1⁄ ) cos(𝜔𝜔c𝑡𝑡),                                         (5.4) 

 

𝐶𝐶𝐽𝐽𝐽𝐽2(𝑡𝑡) = 𝐴𝐴2exp(−𝑡𝑡 𝜏𝜏2⁄ ).                                                          (5.5) 
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Thus, the frequency 𝜔𝜔𝑐𝑐 can be considered as the lower bound of the frequency range of 

the acoustic short-range phonon modes. This means that the density of the acoustic short-

range phonon modes 𝑔𝑔1(𝜔𝜔,𝑇𝑇), goes to zero around 𝜔𝜔𝑐𝑐, so that the frequency range of 

the acoustic short-range phonon modes can be estimated as 𝜔𝜔𝑐𝑐 ≲ 𝜔𝜔 ≤ 𝜔𝜔𝐷𝐷. Meanwhile, 

the density of the acoustic long-range phonon modes 𝑔𝑔2(𝜔𝜔,𝑇𝑇),  is assumed to be spread 

out over the whole frequency range 0 < 𝜔𝜔 ≤ 𝜔𝜔𝐷𝐷. This also suggests that all low-

frequency phonons with 𝜔𝜔 < 𝜔𝜔𝑐𝑐 belong to the acoustic long-range phonon modes. 

Hence, the acoustic short-range phonon modes can be characterized as intermediate- and 

high-frequency phonon modes with 𝜔𝜔 ≳ 𝜔𝜔𝑐𝑐 that reach equilibrium in one step by 

directly undergoing a U-process (fast relaxation process). Consequently, the acoustic 

long-range phonon modes include the low-frequency phonon modes with 𝜔𝜔 < 𝜔𝜔𝑐𝑐 and 

those intermediate- and high-frequency phonon modes which interact with the low-

frequency phonon modes to produce two-step relaxations, as suggested by Klemens 

(slow relaxation process). Perhaps, the best way to view 𝑔𝑔1(𝜔𝜔,𝑇𝑇) and 𝑔𝑔2(𝜔𝜔,𝑇𝑇) is 

through the probabilities 𝑝𝑝1(𝜔𝜔,𝑇𝑇) = 𝑔𝑔1(𝜔𝜔,𝑇𝑇) 𝑔𝑔(𝜔𝜔,𝑇𝑇)⁄  and 𝑝𝑝2(𝜔𝜔,𝑇𝑇) =

𝑔𝑔2(𝜔𝜔,𝑇𝑇) 𝑔𝑔(𝜔𝜔,𝑇𝑇)⁄  (where 𝑔𝑔(𝜔𝜔,𝑇𝑇) = 𝑔𝑔1(𝜔𝜔,𝑇𝑇) + 𝑔𝑔2(𝜔𝜔,𝑇𝑇) is the density of all the 

phonon modes, so that 𝑝𝑝1(𝜔𝜔,𝑇𝑇) + 𝑝𝑝2(𝜔𝜔,𝑇𝑇) = 1) to find the phonon modes between 𝜔𝜔 

and 𝜔𝜔 + 𝑑𝑑𝑑𝑑 at a given temperature 𝑇𝑇 among the acoustic short- and long-range phonon 

modes respectively. 
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Figure 5.1: The normalized HCACF averaged over the NPT, NVT and NVE ensembles of the 

MD models of f.c.c. (a) Cu, (b) Al, (c) NiEAM1, (d) NiEAM2 and (e) Ag at different temperatures 

(black solid line) and its fit by Equation 5.1 (blue dashed line). 

 

  



Chapter 5: The Decomposition Model for Lattice Thermal Conductivity 
 

90 
 

5.1 Thermal Conductivity Decomposition 
 

In the framework of this model for HCACF, this study has demonstrated that the 

thermal conductivity k can be represented as a sum of two contributions (see Equation 

5.6) (Figure 5.2). In accordance with McGaughey and Kaviany [1, 2], the first part of 

the thermal conductivity 𝑘𝑘1 takes into account the acoustic short-range phonons that 

have mean free paths equal to one half of their wavelength, while the second part of 

the thermal conductivity 𝑘𝑘2 takes into account the acoustic long-range phonons with 

mean free paths longer than one half of their wavelength.  

 

𝑘𝑘𝑝𝑝ℎ =
1

𝑉𝑉𝑘𝑘𝐵𝐵𝑇𝑇2
�𝐴𝐴1

𝜏𝜏1
1 + 𝜏𝜏12𝜔𝜔𝑐𝑐2

+ 𝐴𝐴2𝜏𝜏2� = 𝑘𝑘1 + 𝑘𝑘2,                                (5.6) 

 

where: 

 

𝑘𝑘1 =
𝑉𝑉𝐴𝐴1𝜏𝜏1

𝑘𝑘𝐵𝐵𝑇𝑇2(1 + 𝜏𝜏12𝜔𝜔𝑐𝑐2)
,                                                                               (5.7) 

 

𝑘𝑘2 =
𝑉𝑉𝐴𝐴2𝜏𝜏2
𝑘𝑘𝐵𝐵𝑇𝑇2

.                                                                                                   (5.8) 

 

 

The first term in Equation 5.6, given by Equation 5.7, is characterized by the average 

relaxation time: 

 

𝜏𝜏1′ =
𝜏𝜏1

1 + 𝜏𝜏12𝜔𝜔𝑐𝑐2
,                                                                                          (5.9) 
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Furthermore, it can be seen in Figure 5.2, the temperature dependence of the phonon 

thermal conductivity, 𝑘𝑘, of the MD models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag can 

be well fitted by linear functions in different temperature ranges in the 

double-logarithmic scale. The linear fits in Figure 5.2 show that the data varies 

approximately as: (a) 𝑇𝑇−0.93 at 40 - 200 K and 𝑇𝑇−1.36 at 300 - 1300 K, (b) 𝑇𝑇−1.19at 100 

- 500 K, and 𝑇𝑇−1.49at 500 - 1000 K, (c) 𝑇𝑇−0.65at 100 - 500 K, and 𝑇𝑇−1.25at 600 - 1700 

K, (d) 𝑇𝑇−1.2at 100 - 500 K, and 𝑇𝑇−1.85at 600 - 1700 K, and (e) 𝑇𝑇−1.15at 40 - 200 K, and 

𝑇𝑇−1at 200 - 1200 K. These trends correlate well with classical phonon perturbation 

theory (it takes into account the effect of anharmonicity in the atomic interactions to 

describe the three-phonon scattering processes) which predicts that the lattice thermal 

conductivity should be inversely proportional to temperature 𝑘𝑘𝑝𝑝ℎ~𝑇𝑇−1 at sufficiently 

high temperatures (according to some estimations above 𝑇𝑇𝐷𝐷 4⁄  [43]). 

The data on thermal conductivity collected in this study are also in agreement with 

the above mentioned calculations of the phonon thermal conductivity of f.c.c. Cu under 

a large temperature gradient (using heat baths at 300 and 850 K at the ends of the 

simulation cell) [9] with an older EAM potential [10]. In particular, the numerical value 

of the thermal conductivity found in [9], 5.7 W/mK (which probably should be related 

to the temperature 575 K at the middle of the simulation cell), is between the thermal 

conductivities of 6.22 and 4.65 W/mK calculated in the present work at 500 and 600 K, 

respectively.  

As can be seen in Figure 5.2, at low temperatures 𝑘𝑘1 ≪ 𝑘𝑘2 so that we have 𝑘𝑘 ≈

𝑘𝑘2. This means that at low temperatures, the second term in Equation 5.6, which is 

related to the second stage of the HCACF relaxation, dominates and contains most of 

the temperature dependence of the lattice thermal conductivity of the MD models of 

f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag.    
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Figure 5.2: Double-logarithmic plot of the temperature dependence of the thermal conductivity, 

𝑘𝑘𝑝𝑝ℎ, of the MD models of f.c.c. (a) Cu, (b) Al, (c) NiEAM1, (d) NiEAM2 and (e) Ag calculated by 

using Equation 5.6 at different temperatures (diamonds) (see Table 3.1). The solid lines show 

the linear fits of the data in the different temperature ranges. The upward facing triangles (𝑘𝑘1) 

and downward facing triangles (𝑘𝑘2) show the decompositions of the thermal conductivity given 

by Equations 5.7 and 5.8.  

 

5.2 Time Constant 
 

Figure 5.3 illustrates the interrelation between all the discussed time constants 𝜏𝜏1, 𝜏𝜏2 and 

𝜏𝜏1′  for the MD models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag. Also in this figure is 

shown the time constant 𝜏𝜏𝑐𝑐 = 𝜋𝜋 𝜔𝜔𝑐𝑐⁄  (one half of the period of oscillations with 

characteristic frequency 𝜔𝜔𝑐𝑐 ) which according to Einstein [82] is the minimum time 

needed for a vibrational mode with frequency 𝜔𝜔𝑐𝑐 to lose or gain thermal energy, i.e., to 

undergo either a N-process or an U-process. It can be seen in Figure 5.3 that, at low 
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temperatures, 𝜏𝜏1 approaches 𝜏𝜏𝑐𝑐. This means that the apparent contribution of the low 

frequency phonon modes to 𝜏𝜏1 in the case 𝜔𝜔𝑐𝑐 → 0 should be the most significant at low 

temperatures. As a result, the difference between 𝜏𝜏1 and 𝜏𝜏1′  , due to the cut-off of the 

density of the acoustic short-range phonon modes at 𝜔𝜔𝑐𝑐, is the most remarkable at low 

temperatures. In contrast, at high temperatures 𝜏𝜏1 ≪ 𝜏𝜏𝑐𝑐, so that the cut-off of the density 

of the acoustic short-range phonon modes at 𝜔𝜔𝑐𝑐 leads to a smaller difference between 𝜏𝜏1 

and 𝜏𝜏1′ . In addition, it is important to point out that 𝜏𝜏1′≪ 𝜏𝜏2 at all temperatures. 
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Figure 5.3: Double-logarithmic plots of the temperature dependences of the time constants 𝜏𝜏1 

(upward facing solid triangle), 𝜏𝜏2 (downward facing solid triangle), 𝜏𝜏1′  (upward facing open 

triangle) and 𝜏𝜏𝑐𝑐 = 𝜋𝜋 𝜔𝜔𝑐𝑐⁄  (open diamonds) calculated within the framework of the HCACF 

decomposition given by Equation 5.6 as applied to the MD models of f.c.c. (a) Cu, (b) Al, (c) 

NiEAM1, (d) NiEAM2 and (e) Ag.  

 

5.3 Analysis of the Phonon Thermal Conductivity Decomposition 
 

In general, the lattice thermal conductivity of an isotropic solid can be derived from the 

Boltzmann transport equation in the form [17]: 

 

𝑘𝑘 =
1
3
� 𝑐𝑐(𝜔𝜔,𝑇𝑇)𝑣𝑣𝐺𝐺2
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
(𝜔𝜔,𝑇𝑇)𝜏𝜏∗(𝜔𝜔,𝑇𝑇)𝑔𝑔(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑,                                 (5.10) 

             

where: 

 

𝑐𝑐(𝜔𝜔,𝑇𝑇) =
ℏ2𝜔𝜔2

𝑘𝑘𝐵𝐵𝑇𝑇2
𝑒𝑒𝑒𝑒𝑒𝑒 � ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇

�

�𝑒𝑒𝑒𝑒𝑒𝑒 � ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇
� − 1�

2                                                           (5.11) 

 

is the phonon-specific heat, 𝑣𝑣𝐺𝐺(𝜔𝜔,𝑇𝑇) is the phonon group velocity, 𝜏𝜏∗(𝜔𝜔,𝑇𝑇) is the 

phonon relaxation time, 𝑔𝑔(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑 is the number of phonon modes between 𝜔𝜔 and 𝜔𝜔 +

𝑑𝑑𝑑𝑑 per unit volume of crystal (𝑔𝑔(𝜔𝜔,𝑇𝑇) is the density of phonon modes) and 𝜔𝜔𝐷𝐷(𝑇𝑇) is 

the Debye (maximum) frequency, such that there are in total 3N distinguishable phonon 

modes (N is the number of atoms in the crystal): 

 

3𝑁𝑁
𝑉𝑉

= � 𝑔𝑔(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑       
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
                                                             (5.12) 

                 



Chapter 5: The Decomposition Model for Lattice Thermal Conductivity 
 

99 
 

It should be noted that for every given pair of 𝜔𝜔 and  𝑇𝑇, the 

product 𝑣𝑣𝐺𝐺2(𝜔𝜔,𝑇𝑇)𝜏𝜏∗(𝜔𝜔,𝑇𝑇)𝑔𝑔(𝜔𝜔,𝑇𝑇) inside the integral in Equation 5.10 should be 

considered as an appropriately weighted average over the different reciprocal lattice 

directions and the different phonon polarizations (one longitudinal and two transverse). 

Next, using the concept described above on the two-stage decay of the HCACF 

of a crystal with a monatomic unit cell, the general expression for the lattice thermal 

conductivity given by Equation 5.10 can be decomposed (by way of analogy with 

Equation 5.6) into two contributions 𝑘𝑘1 and 𝑘𝑘2 associated with the acoustic short- and 

long-range phonon modes, respectively: 

 

𝑘𝑘1 =
1
3
� 𝑐𝑐(𝜔𝜔,𝑇𝑇)𝑣𝑣𝐺𝐺2(𝜔𝜔,𝑇𝑇)𝜏𝜏1∗
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
(𝜔𝜔,𝑇𝑇)𝑔𝑔1(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑,                                      (5.13) 

 

𝑘𝑘2 =
1
3
� 𝑐𝑐(𝜔𝜔,𝑇𝑇)𝑣𝑣𝐺𝐺2(𝜔𝜔,𝑇𝑇)𝜏𝜏2∗
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
(𝜔𝜔,𝑇𝑇)𝑔𝑔2(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑,                                     (5.14) 

 

where, 𝜏𝜏1∗(𝜔𝜔,𝑇𝑇) and 𝜏𝜏2∗(𝜔𝜔,𝑇𝑇) are the relaxation times of the acoustic short- and 

long-range phonon modes, respectively, while 𝑔𝑔1(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑 and 𝑔𝑔2(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑 are the 

numbers of the acoustic short- and long-range phonon modes, respectively, between 

𝜔𝜔 and 𝜔𝜔 + 𝑑𝑑𝑑𝑑 per unit volume of crystal (𝑔𝑔1(𝜔𝜔,𝑇𝑇) and 𝑔𝑔2(𝜔𝜔,𝑇𝑇) are the partial densities 

of the acoustic short- and long-range phonon modes, respectively). By this definition, it 

follows that: 

 

𝜏𝜏∗(𝜔𝜔,𝑇𝑇)𝑔𝑔(𝜔𝜔,𝑇𝑇) = 𝜏𝜏1∗(𝜔𝜔,𝑇𝑇)𝑔𝑔1(𝜔𝜔,𝑇𝑇) + 𝜏𝜏2∗(𝜔𝜔,𝑇𝑇)𝑔𝑔2(𝜔𝜔,𝑇𝑇),               (5.15) 

 

𝑔𝑔(𝜔𝜔,𝑇𝑇) = 𝑔𝑔1(𝜔𝜔,𝑇𝑇) + 𝑔𝑔2(𝜔𝜔,𝑇𝑇).                                                              (5.16) 
 

Thus, there are in total 𝑁𝑁1 and 𝑁𝑁2 acoustic short- and long-range phonon modes, 

respectively (𝑁𝑁1 + 𝑁𝑁2 = 𝑁𝑁): 

 

𝑁𝑁1
𝑉𝑉

= � 𝑔𝑔1
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑,                                                                                  (5.17) 
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𝑁𝑁2
𝑉𝑉

= � 𝑔𝑔2
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑,                                                                                  (5.18) 

 

As a result, the average relaxation times of the acoustic short- and long-range 

phonon modes can be defined as: 

 

𝜏𝜏1∗ =
𝑉𝑉
𝑁𝑁1
� 𝜏𝜏1∗(𝜔𝜔,𝑇𝑇)𝑔𝑔1(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑,
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
                                                 (5.19) 

 

𝜏𝜏2∗ =
𝑉𝑉
𝑁𝑁2

� 𝜏𝜏2∗(𝜔𝜔,𝑇𝑇)𝑔𝑔2(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑,
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
                                                (5.20) 

 

so that the average relaxation time of all the phonon modes is given by: 

 

𝜏𝜏̅∗ = 𝑓𝑓1𝜏𝜏1̅∗ + 𝑓𝑓2𝜏𝜏2̅∗ =
𝑉𝑉

3𝑁𝑁
� 𝜏𝜏∗(𝜔𝜔,𝑇𝑇)𝑔𝑔(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑,                     (5.21)
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
 

 

where 𝑓𝑓1 = 𝑁𝑁1/3𝑁𝑁 and 𝑓𝑓2 = 𝑁𝑁2/3𝑁𝑁 are the fractions of the acoustic short- and 

long-range phonon modes, respectively (𝑓𝑓1 + 𝑓𝑓2 = 1). Moreover, the partial heat 

capacities of the acoustic short- and long-range phonon modes, respectively, are: 

 

𝐶𝐶1 = � 𝑐𝑐(𝜔𝜔,𝑇𝑇)𝑔𝑔1(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑,
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
                                                       (5.22) 

 



Chapter 5: The Decomposition Model for Lattice Thermal Conductivity 
 

101 
 

𝐶𝐶2 = � 𝑐𝑐(𝜔𝜔,𝑇𝑇)𝑔𝑔2(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑,
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
                                                       (5.23) 

 

so that the total heat capacity of all the phonon modes is given by: 

 

𝐶𝐶 = 𝐶𝐶1 + 𝐶𝐶2 = � 𝑐𝑐(𝜔𝜔,𝑇𝑇)𝑔𝑔(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑,                                     (5.24)
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
 

 

It should also be noted that in the decomposition of the lattice thermal 

conductivity given by Equations 5.13 and 5.14, it was assumed that the phonon group 

velocity 𝑣𝑣𝐺𝐺(𝜔𝜔,𝑇𝑇) depends mainly on the frequency, while it is much less sensitive to 

the type (short or long range) of the phonon modes. Hence, it is treated identically for 

both the short- and long-range phonon modes. 

Finally, some remarks on the partial densities 𝑔𝑔1(𝜔𝜔,𝑇𝑇) and 𝑔𝑔2(𝜔𝜔,𝑇𝑇) of the 

acoustic short- and long-range phonon modes are provided. As discussed in the previous 

section, the density of the acoustic short-range phonon modes 𝑔𝑔1(𝜔𝜔,𝑇𝑇) is supposed to 

go to zero around 𝜔𝜔𝑐𝑐, so that the actual frequency range of the acoustic short-range 

phonon modes in Equations 5.13, 5.17, 5.19 and 5.22 can be estimated as 𝜔𝜔𝑐𝑐 ≲ 𝜔𝜔 ≤ 𝜔𝜔𝐷𝐷. 

The densities of the acoustic long-range phonon modes 𝑔𝑔2(𝜔𝜔,𝑇𝑇) are supposed to be 

spread out over the whole frequency range 0 < 𝜔𝜔 ≤ 𝜔𝜔𝐷𝐷, so that 𝑔𝑔2(𝜔𝜔,𝑇𝑇) ≡ 𝑔𝑔(𝜔𝜔,𝑇𝑇) 

at 𝜔𝜔 ≲  𝜔𝜔𝑐𝑐. Nonetheless, the actual fraction of the low-frequency phonon modes with 

𝜔𝜔 ≲  𝜔𝜔𝑐𝑐 relative to the total number of all phonon modes is expected to be a very small 

quantity, in the order of about 10−2 or even less, as pointed out in Chapter 1. Thus, the 

main contributions to both the 𝑔𝑔1(𝜔𝜔,𝑇𝑇) and the 𝑔𝑔2(𝜔𝜔,𝑇𝑇) are supposed to come from the 

intermediate- and high-frequency phonon modes with 𝜔𝜔 ≥  𝜔𝜔𝑐𝑐, so that the partial 

fractions 𝑓𝑓1 and 𝑓𝑓2 of the acoustic short- and long-range phonon modes can be expected 

to be quantities of the same order of magnitude. 

At high temperatures 𝑇𝑇 > 𝑇𝑇𝐷𝐷 ,  when all the phonon modes are excited and the 

phonon specific heat, given by Equation 5.17, is nearly the same for all the phonon 
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modes and can be approximated by the classical value of 𝑘𝑘𝐵𝐵.  Hence, for high 

temperatures 𝑇𝑇 > 𝑇𝑇𝐷𝐷 , Equations 5.13 and 5.14 can be rewritten as: 

 

𝑘𝑘1 =
𝑘𝑘𝐵𝐵
3
� 𝑣𝑣𝐺𝐺2
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
(𝜔𝜔,𝑇𝑇)𝜏𝜏1∗(𝜔𝜔,𝑇𝑇)𝑔𝑔1(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑,                                (5.25) 

 

𝑘𝑘2 =
𝑘𝑘𝐵𝐵
3
� 𝑣𝑣𝐺𝐺2
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
(𝜔𝜔,𝑇𝑇)𝜏𝜏2∗(𝜔𝜔,𝑇𝑇)𝑔𝑔2(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑,                             (5.26) 

 

while from Equation 5.17, 5.18 and 5.22 – 5.24 it follows that: 

 

𝐶𝐶1 = 𝜑𝜑1𝐶𝐶,                                                                                            (5.27) 

 

𝐶𝐶2 = 𝜑𝜑2𝐶𝐶,                                                                                            (5.28) 

where 𝜑𝜑1 and 𝜑𝜑2 are the relative contributions of the acoustic short- and long-range 

phonon modes to the lattice heat capacity, respectively (𝜑𝜑1 + 𝜑𝜑2 = 1), and 𝐶𝐶 is the heat 

capacity and also:  

 

𝐶𝐶DP =
3𝑁𝑁𝑘𝑘𝐵𝐵
𝑉𝑉

                                                                                      (5.29) 

 

is the classical lattice heat capacity, known as the Dulong and Petit value. Finally, the 

average phonon velocity of the acoustic short- and long-range phonon modes is defined 

as: 

 

𝑣𝑣12 =
𝑉𝑉

𝑁𝑁1𝜏𝜏1̅∗
� 𝑣𝑣𝐺𝐺2
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
(𝜔𝜔,𝑇𝑇)𝜏𝜏1∗(𝜔𝜔,𝑇𝑇)𝑔𝑔1(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑,                             (5.30) 
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𝑣𝑣22 =
𝑉𝑉

𝑁𝑁2𝜏𝜏2̅∗
� 𝑣𝑣𝐺𝐺2
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
(𝜔𝜔,𝑇𝑇)𝜏𝜏2∗(𝜔𝜔,𝑇𝑇)𝑔𝑔2(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑,                            (5.31) 

 

so that the average phonon velocities of all the phonon modes is given by: 

 

𝑣𝑣2 = 𝜑𝜑1𝑣𝑣12
𝜏𝜏1̅∗

𝜏𝜏̅∗
+ 𝜑𝜑2𝑣𝑣22

𝜏𝜏2̅∗

𝜏𝜏̅∗
=

𝑉𝑉
3𝑁𝑁𝜏𝜏̅∗

� 𝑣𝑣𝐺𝐺2(𝜔𝜔,𝑇𝑇)𝜏𝜏∗(𝜔𝜔,𝑇𝑇)𝑔𝑔(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑.                (5.32)
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
 

 

Thus, Equations 5.25 and 5.26 can be rewritten in the form of simple kinetic 

formulas: 

 

𝑘𝑘1 =
1
3
𝐶𝐶1𝑣𝑣12𝜏𝜏1̅∗,                                                                                    (5.33) 

 

𝑘𝑘2 =
1
3
𝐶𝐶2𝑣𝑣22𝜏𝜏2̅∗.                                                                                   (5.34) 

 

Now, by direct comparison of Equations 5.33 and 5.34 with the results of the 

classical MD simulations given by Equations 5.7 – 5.9, one can obtain the following 

relations: 

 

1
3
𝐶𝐶1𝑣𝑣12 =

𝐴𝐴1
𝑉𝑉𝑘𝑘𝐵𝐵𝑇𝑇2

,                                                                                    (5.35) 

 

𝜏𝜏1̅∗ = 𝜏𝜏1′ =
𝜏𝜏1

1 + 𝜏𝜏12𝜔𝜔c2
                                                                               (5.36) 



Chapter 5: The Decomposition Model for Lattice Thermal Conductivity 
 

104 
 

 
1
3
𝐶𝐶2𝑣𝑣22 =

𝐴𝐴2
𝑉𝑉𝑘𝑘𝐵𝐵𝑇𝑇2

,                                                                                   (5.37) 

 

𝜏𝜏2̅∗ = 𝜏𝜏2′ .                                                                                                    (5.38) 

 

Hence, by combining Equations 5.35 and 5.36, and taking into account Equations 

5.1 (page 81) and 5.29, one can find that: 

 

𝜑𝜑1𝑣𝑣12 + 𝜑𝜑2𝑣𝑣22 = 𝑣𝑣𝐽𝐽2,                                                                             (5.39) 

 

where: 

 

𝑣𝑣𝐽𝐽 =
1
𝑘𝑘B𝑇𝑇�

𝐴𝐴1 + 𝐴𝐴2

𝑁𝑁( 𝐶𝐶
𝐶𝐶DP

)
=

1
𝑘𝑘B𝑇𝑇�

〈𝑱𝑱2〉

3𝑁𝑁( 𝐶𝐶
𝐶𝐶𝐷𝐷𝐷𝐷

)
                                         (5.40) 

 

can be described as the average phonon velocity determined from the second-order 

fluctuations of the heat current vector. Then, it follows that: 

 

𝑣𝑣1 = �
𝜀𝜀1
𝜑𝜑1

𝑣𝑣𝐽𝐽,                                                                                              (5.41) 

 

𝑣𝑣2 = �
𝜀𝜀2
𝜑𝜑2

𝑣𝑣𝐽𝐽,                                                                                             (5.42) 
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where: 

𝜀𝜀1 =
𝐴𝐴1

𝐴𝐴1 + 𝐴𝐴2
,                                                                                         (5.43) 

 

𝜀𝜀2 =
𝐴𝐴2

𝐴𝐴1 + 𝐴𝐴2
,                                                                                       (5.44) 

 

( 𝜀𝜀1 + 𝜀𝜀2 = 1 ). From Equations 5.41 and 5.42, the following relation can also be 

obtained: 

 

𝜀𝜀1
𝑣𝑣12

+
𝜀𝜀2
𝑣𝑣22

=
1
𝑣𝑣𝐽𝐽2

.                                                                        (5.45) 

  

At this point, it was assumed that the average phonon velocities of the acoustic 

short- and long-range phonon modes given by Equations 5.30 and 5.31 may 

approximately be considered as equal to each other 𝑣𝑣1 ≈ 𝑣𝑣2. Indeed, the fraction of the 

low-frequency phonon modes 𝜔𝜔 ≲ 𝜔𝜔𝑐𝑐, which have higher velocities than other modes, 

was very small, as discussed above. Consequently, the contribution of the low-frequency 

phonon modes 𝜔𝜔 ≲ 𝜔𝜔𝑐𝑐  to 𝑣𝑣2 was also expected to be small. Meanwhile, the main 

contributions from the intermediate- and high-frequency phonon modes 𝜔𝜔 ≥ 𝜔𝜔𝑐𝑐 to 𝑣𝑣1 

and 𝑣𝑣2 can be expected to be rather similar. Then, from Equations 5.41 and 5.42, it 

follows that the fractions (or partial heat capacities) of the acoustic short- and long-range 

phonon modes can be estimated as 𝑓𝑓1 ≈ 𝜀𝜀1 and 𝑓𝑓2 ≈ 𝜀𝜀2 , respectively. Thus, the MD 

calculations of the HCACF of a crystal with a monatomic unit cell, besides the phonon 

thermal conductivity and its decomposition into 𝑘𝑘1 and 𝑘𝑘2, also allow for the numerical 

decomposition of 𝑘𝑘1  and 𝑘𝑘2 , according to the simple kinetic formulas (see Equations 

5.33 and 5.34), as products consisting of the heat capacity and the average relaxation 

time of the considered phonon modes as well as the square of the average phonon 

velocity. 
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Figure 5.4 shows the average phonon velocity 𝑣𝑣𝐽𝐽 of the MD models of f.c.c. Cu, 

Al, NiEAM1, NiEAM2 and Ag calculated according to Equation 5.40 as a function of the 

temperature in the temperature range that is above the Debye temperature of the models, 

as mentioned in Table 3.5. It can be seen in Figure 5.4 that, over the temperature ranges 

considered, the average phonon velocity changes with temperature in good agreement 

with the linear law (see Table 5.1): 

 

𝑣𝑣𝐽𝐽 = 𝑣𝑣0 + 𝛼𝛼𝑣𝑣𝑇𝑇,                                                                             (5.46) 

 

Table 5.1 shows the details of the average phonon velocities at zero temperature, 𝑣𝑣0, of 

metals that are in good agreement with the average speed of sound by using zero 

temperature elastic constants of the MD models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag 

(see Table 3.5). 
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Figure 5.4: Temperature dependences of the average phonon velocities for the MD models of 

f.c.c. (a) Cu, (b) Al, (c) NiEAM1, (d) NiEAM2 and (e) Ag calculated according to Equation 5.40 at 

different temperature ranges above TD. The lines show the linear fit of the data according to 

Equation 5.46. 

 

Table 5.1: Details of the linear fits of the average phonon velocities (𝑣𝑣0,𝛼𝛼𝑣𝑣), Debye frequencies 

(𝜔𝜔𝐷𝐷) and Debye temperatures (𝑇𝑇𝐷𝐷) at zero temperature. 

Metals 𝑣𝑣0 (
km

s
) 𝛼𝛼𝑣𝑣(×

10−4km
sK

) 𝜔𝜔𝐷𝐷 (THz) 𝑇𝑇𝐷𝐷 (K) 

Cu 2.72 4.64 46.7 356 
Al 3.68 8.64 56.2 429 

NiEAM1 3.23 4.54 56.7 433 
NiEAM2 3.15 1.98 55.4 423 

Ag 2.16 4.39 32.7 250 
 

Figure 5.5 shows the temperature dependences of the total lattice heat capacity 

𝐶𝐶 as well as the partial heat capacities 𝐶𝐶1 ≈ 𝐶𝐶𝐶𝐶1/(𝐴𝐴1 + 𝐴𝐴2) (upward facing triangles) 

and 𝐶𝐶2 ≈ 𝐶𝐶𝐶𝐶2/(𝐴𝐴1 + 𝐴𝐴2) (downward facing triangles) of the acoustic short range 

phonon and acoustic long-range phonon modes, respectively, calculated for the MD 

models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag over temperature ranges more than the 

Debye temperature (see Table 3.5). Firstly, the classical value of the lattice heat capacity 

at a constant volume in temperature ranges of more than the Debye temperature was 

verified: 

 

𝐶𝐶 = 𝐶𝐶𝑉𝑉 =
1
𝑉𝑉
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑉𝑉

,                                                                        (5.47) 

 

where 𝐸𝐸 is the internal energy of the model. For each temperature considered, and their 

respective zero-pressure volumes, this was done by linear approximations of the internal 

energy of the model at five nearby temperatures separated by a 5 K increment at the 

fixed volume. It can be seen in Figure 5.5 that the data obtained for the temperature 

ranges considered can be approximated with very good accuracy by the classical 

value 𝐶𝐶𝐷𝐷𝐷𝐷. This reassured us in the use of the classical value 𝐶𝐶𝐷𝐷𝐷𝐷 in the calculation (in 
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particular in Equation 5.40). It can be seen in Figure 5.5 that 𝐶𝐶1 dominates the whole 

temperature range. However, with decreasing temperatures the difference between 𝐶𝐶1 

and 𝐶𝐶2 diminishes. Thus, one can conclude that at high temperatures the average 

contribution of the direct U-processes (the fast relaxation process) in restoring the 

equilibrium distribution of the high- and intermediate-frequency phonon modes 𝜔𝜔 ≳ 𝜔𝜔c, 

i.e., the fraction of the acoustic short range phonon modes, prevails over the slow 

relaxation process, i.e., the fraction of the acoustic long-range phonon modes. This leads 

to the conclusion that the contribution of the acoustic short range phonon modes to the 

lattice thermal conductivity is notable at high temperatures and cannot be neglected (see 

Figure 5.2), despite the considerably shorter average relaxation time 𝜏𝜏1′  of the acoustic 

short range phonon modes in comparison to the average relaxation time 𝜏𝜏2 of the 

acoustic long-range phonon modes (see Figure 5.3). The decomposition on the acoustic 

short- and long-range phonon modes is probably also the reason that the lattice thermal 

conductivity varies more rapidly than the 𝑇𝑇−1 law at 𝑇𝑇 > 𝑇𝑇D. In addition, it was noted 

that in principle, it can be expected that 𝐶𝐶2 might be close to zero at some very high 

temperatures which is, however, likely to be always higher than the melting temperature 

𝑇𝑇m. Although such a state of phonon gas, consisting mainly of the acoustic short range 

phonon modes, is hard to realise in a crystal lattice, it would be of great interest for the 

development of advanced energy conversion devices that utilize the thermoelectric 

effect [8]. 
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Figure 5.5: Temperature dependences of the partial heat capacities 𝐶𝐶1 (upward facing triangles) 

and 𝐶𝐶2 (downward facing triangles) of the acoustic short- and long-range phonon modes for the 

MD models of f.c.c. (a) Cu, (b) Al, (c) NiEAM1, (d) NiEAM2 and (e) Ag over temperature ranges of 

more than the Debye temperature. Diamonds show the calculated lattice heat capacity 𝐶𝐶 = 𝐶𝐶𝑉𝑉. 

 

 At low temperatures 𝑇𝑇 < 𝑇𝑇𝐷𝐷, not all of the phonon modes will be excited in the 

quantum crystal system. In this case, the classical approximation for the phonon specific 

heat can no longer be used.  However, according to the MD results at low temperatures, 

one can note in Figure 5.2 that 𝑘𝑘1 ≪ 𝑘𝑘2, so that we have [1-3]: 

 

𝑘𝑘 ≈ 𝑘𝑘2 =
1
3
� 𝑐𝑐(𝜔𝜔,𝑇𝑇)𝑣𝑣𝐺𝐺2
𝜔𝜔𝐷𝐷(𝑇𝑇)

0
(𝜔𝜔,𝑇𝑇)𝜏𝜏2∗(𝜔𝜔,𝑇𝑇)𝑔𝑔2(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑,                             (5.48) 
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where, 𝐶𝐶(𝜔𝜔,𝑇𝑇) is the phonon heat capacity (see Equation 5.11), 𝑣𝑣𝐺𝐺(𝜔𝜔,𝑇𝑇) is the phonon 

group velocity, 𝜏𝜏2∗(𝜔𝜔,𝑇𝑇) is the relaxation time of the acoustic long-range phonon modes, 

𝑔𝑔2(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑 is the number of the acoustic long-range phonon modes between 𝜔𝜔 and 𝜔𝜔 +

𝑑𝑑𝑑𝑑 per unit volume of crystal (𝑔𝑔2(𝜔𝜔,𝑇𝑇) is the density of the acoustic long-range phonon 

modes), and 𝜔𝜔𝐷𝐷(𝑇𝑇) is the Debye frequency. At low temperatures, the contributions of 

the acoustic short range phonon modes can be neglected because their average relaxation 

time 𝜏𝜏1̅∗ ≡ 𝜏𝜏1′  is approximately one to two orders of magnitude shorter than 𝜏𝜏2̅∗ ≡ 𝜏𝜏2 (see 

Figure 5.3).   

As the temperature goes below 𝑇𝑇𝐷𝐷, the fraction of excited phonon modes in a real 

crystal and, consequently, the lattice heat capacity 𝐶𝐶, start to decrease. It was assumed 

that the decrease of 𝐶𝐶 should first of all be determined by the decrease of the heat 

capacity 𝐶𝐶1 of the acoustic short range phonon modes, and only then, at sufficiently low 

temperatures, where 𝐶𝐶1 ≪ 𝐶𝐶, by a decrease of the heat capacity 𝐶𝐶2 of the acoustic long-

range phonon modes. Then, it is reasonable to surmise that classical MD simulations 

could be used to estimate the lattice thermal conductivity (limited by the phonon-phonon 

interactions) of a real quantum crystal at temperatures 𝑇𝑇 < 𝑇𝑇𝐷𝐷, if the two following 

conditions were to be satisfied simultaneously: (i) all the low-frequency phonon modes 

with 𝜔𝜔 ≲ 𝜔𝜔𝑐𝑐 must be entirely excited, i.e., 𝑇𝑇 ≳ 𝑇𝑇𝑐𝑐 (𝑇𝑇𝑐𝑐 = ℏ𝜔𝜔𝑐𝑐
𝑘𝑘𝐵𝐵

), and (ii) the total number 

of excited phonon modes must be sufficient to produce a two-step relaxation as 

suggested by Klemens [78, 80] (slow relaxation process), i.e., 𝐶𝐶2 ≪ 𝐶𝐶. Indeed, the 

freezing out of some fraction of the intermediate- and high-frequency phonon modes in 

a real crystal at temperatures below 𝑇𝑇𝐷𝐷 would produce, in comparison with the classical 

MD model, an extra decrease of 𝐶𝐶1 and, consequently, 𝑘𝑘1, but, even without it, 𝑘𝑘1 is 

negligible compare to 𝑘𝑘2  at 𝑇𝑇 < 𝑇𝑇𝐷𝐷 in the classical MD model. Therefore, the thermal 

transport properties limited by the phonon-phonon interactions in both a real crystal and 

its classical MD model at 𝑇𝑇𝑐𝑐 ≲ 𝑇𝑇 < 𝑇𝑇𝐷𝐷 should be determined by nearly the same 

contribution of the acoustic long-range phonon modes. 

As a first approximation, let us neglect the frequency dependency of 𝑣𝑣𝐺𝐺(𝜔𝜔,𝑇𝑇), so 

that its average value 𝑣𝑣𝐽𝐽 can be used. Then, over the temperature range 𝑇𝑇𝑐𝑐 ≲ 𝑇𝑇 < 𝑇𝑇𝐷𝐷 we 

can rewrite Equation 5.48 as: 
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𝑘𝑘𝑝𝑝ℎ ≈ 𝑘𝑘2 ≈
1
3
𝐶𝐶2′𝑣𝑣𝑞𝑞2𝜏𝜏2̅∗

′ +
𝑣𝑣𝑞𝑞2

3
� 𝑐𝑐(𝜔𝜔,𝑇𝑇)𝑣𝑣𝐺𝐺2(𝜔𝜔,𝑇𝑇)𝜏𝜏2∗(𝜔𝜔,𝑇𝑇)𝑔𝑔2(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑.

𝜔𝜔𝐷𝐷(𝑇𝑇)

𝜔𝜔𝑐𝑐(𝑇𝑇)

          (5.49) 

 

where: 

𝐶𝐶2′ ≈ 𝑘𝑘𝐵𝐵 � 𝑔𝑔2(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑 =

𝜔𝜔𝑐𝑐(𝑇𝑇)

0

𝑘𝑘𝐵𝐵
3𝑓𝑓2′𝑁𝑁
𝑉𝑉

                                         (5.50) 

 

is the heat capacity of the acoustic long-range phonon modes with 𝜔𝜔 ≲ 𝜔𝜔𝑐𝑐 (𝑐𝑐(𝜔𝜔,𝑇𝑇) ≈

𝑘𝑘𝐵𝐵 for 𝑇𝑇 ≳ 𝑇𝑇𝑐𝑐 and 𝜔𝜔 ≲ 𝜔𝜔𝑐𝑐), 𝑓𝑓2′ is the fraction of the acoustic long-range phonon modes 

with 𝜔𝜔 ≲ 𝜔𝜔𝑐𝑐, and:  

 

𝜏𝜏2̅∗′ =
𝑉𝑉

3𝑓𝑓2′𝑁𝑁
� 𝜏𝜏2∗(𝜔𝜔,𝑇𝑇)𝑔𝑔2(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑

𝜔𝜔𝑐𝑐(𝑇𝑇)

0

                                      (5.51) 

 

is the average relaxation time of the acoustic long-range phonon modes with 𝜔𝜔 ≲ 𝜔𝜔𝑐𝑐. It 

also should be recalled that according to the model description, all the low-frequency 

phonons with 𝜔𝜔 ≲ 𝜔𝜔𝑐𝑐 belong to the acoustic long-range phonon modes, so that 

𝑔𝑔2(𝜔𝜔,𝑇𝑇) ≡ 𝑔𝑔(𝜔𝜔,𝑇𝑇) at 𝜔𝜔 ≲ 𝜔𝜔𝑐𝑐 (where 𝑔𝑔(𝜔𝜔,𝑇𝑇) is the total density of all the phonon 

modes). Moreover, it is reasonable to assume that the average relaxation time, 𝜏𝜏2̅∗, of the 

acoustic long-range phonon modes is mostly defined by the average relaxation time, 𝜏𝜏2̅∗′, 

of the acoustic long-range phonon modes with 𝜔𝜔 ≲ 𝜔𝜔𝑐𝑐, because specifically, these 

phonon modes intrinsically originate the two step slow relaxation process, as described 

above. As a result, the phonon relaxation time, 𝜏𝜏2∗(𝜔𝜔,𝑇𝑇), of the acoustic long-range 

phonon modes with 𝜔𝜔 ≳ 𝜔𝜔𝑐𝑐 should be considered as being closely coupled to 𝜏𝜏2̅∗′ ≈ 𝜏𝜏2̅∗. 

For this reason, we can neglect the frequency dependency of 𝜏𝜏2∗(𝜔𝜔,𝑇𝑇) compared to 

𝑐𝑐(𝜔𝜔,𝑇𝑇) in the second term on the right hand side of Equation 5.49, so that the average 
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relaxation time 𝜏𝜏2̅∗ can be used to replace 𝜏𝜏2∗(𝜔𝜔,𝑇𝑇). Thus, Equation 5.49 can be evaluated 

to obtain a simple kinetic formula: 

 

𝑘𝑘𝑝𝑝ℎ ≈ 𝑘𝑘2 ≈
1
3
𝐶𝐶2′𝑣𝑣𝑞𝑞2𝜏𝜏2̅∗ +

1
3
𝐶𝐶2′′𝑣𝑣𝑞𝑞2𝜏𝜏2̅∗ =

1
3
𝐶𝐶2𝑣𝑣𝑞𝑞2𝜏𝜏2̅∗,                            (5.52) 

 

where: 

 

𝐶𝐶2′′ = � 𝑐𝑐(𝜔𝜔,𝑇𝑇)𝑔𝑔2(𝜔𝜔,𝑇𝑇)𝑑𝑑𝑑𝑑                                                       (5.53)

𝜔𝜔𝐷𝐷(𝑇𝑇)

𝜔𝜔𝑐𝑐(𝑇𝑇)

 

 

is the heat capacity of the acoustic long-range phonon modes with 𝜔𝜔 ≳ 𝜔𝜔𝑐𝑐, so that: 

 

𝐶𝐶2 = 𝐶𝐶2′ + 𝐶𝐶2′′.                                                                                     (5.54) 

 

The simple kinetic formula given by Equation 5.52 allows us to evaluate 𝐶𝐶2 in the 

temperature range 𝑇𝑇𝑐𝑐 ≲ 𝑇𝑇 < 𝑇𝑇𝐷𝐷 and, hence, compare it to 𝐶𝐶 by employing the Debye 

approximation [17, 20, 21] for the heat capacity of a crystal, so that the feasibility of the 

simultaneous satisfaction of the two above mentioned conditions can be directly verified 

in a self-consistent manner. The total phonon heat capacity of a crystal can be estimated 

as the Debye heat capacity [17, 20, 21]: 

 

𝐶𝐶 ≈ 𝐶𝐶𝐷𝐷 =
9𝑁𝑁𝑘𝑘𝐵𝐵
𝑉𝑉

�
𝑇𝑇
𝑇𝑇𝐷𝐷
�
3

�
𝑥𝑥4𝑒𝑒𝑥𝑥

(𝑒𝑒𝑥𝑥 − 1)2

𝑇𝑇𝐷𝐷
𝑇𝑇

0

𝑑𝑑𝑑𝑑.                                          (5.55) 
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Hence, a classical description of the thermal transport properties of the acoustic 

long-range phonon modes in the temperature range 𝑇𝑇𝑐𝑐 ≲ 𝑇𝑇 < 𝑇𝑇𝐷𝐷 can be considered if 

𝐶𝐶2 ≈ 3𝑘𝑘2/𝑣𝑣𝐽𝐽2𝜏𝜏2̅∗ (𝑣𝑣𝐽𝐽  can be estimated by linear extrapolation according to Equation 5.46, 

and 𝜏𝜏2̅∗ can be taken as approximately equal to 𝜏𝜏2), estimated from Equation 5.52, is less 

than the Debye heat capacity 𝐶𝐶𝐷𝐷. Figure 5.6 shows the temperature dependences of both 

𝐶𝐶2 (including its high temperature values) and 𝐶𝐶𝐷𝐷 (at 𝑇𝑇 < 𝑇𝑇𝐷𝐷). It can be seen that 𝐶𝐶𝐷𝐷 

reaches 𝐶𝐶2 at a temperature of around 90 K for the f.c.c. Cu model (see Figure 5.6(a)), 

100 K for the f.c.c. Al, NiEAM1, NiEAM2 models (see Figure 5.6(b), 5.6(c) and 5.6(d), 

respectively) and 60 K for the f.c.c. Ag model (see Figure 5.6(e)). Meanwhile, the fitting 

of the HCACFs of the MD models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag at the 

mentioned temperatures gave the characteristic frequency (𝜔𝜔𝑐𝑐) of approximately 11.5, 

17.4, 12.6, 14.1 and 8.02 THz, respectively. The values of the characteristic temperature 

(𝑇𝑇𝑐𝑐 = ℏ𝜔𝜔𝑐𝑐
𝑘𝑘𝐵𝐵

) of the MD models of f.c.c. of Cu, Al, NiEAM1, NiEAM2 and Ag were around 

88, 133, 96, 108 and 61 K for those frequencies were in excellent agreement with the 

mentioned temperatures (90 K for f.c.c. Cu model, 100 K for the f.c.c. Al, NiEAM1, 

NiEAM2 models and 60 K for the f.c.c. Ag model) found from the condition 𝐶𝐶2 = 𝐶𝐶𝐷𝐷 (see 

Figure 5.6). Consequently, one can conclude that for the MD models of f.c.c. Cu, Al, 

NiEAM1, NiEAM2 and Ag the temperature range, where both abovementioned conditions 

are satisfied simultaneously, is 𝑇𝑇𝑐𝑐 ≲ 𝑇𝑇 < 𝑇𝑇𝐷𝐷, with 𝑇𝑇𝑐𝑐 estimated to be around one quarter 

of 𝑇𝑇𝐷𝐷. 
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Figure 5.6: Heat capacity of the acoustic long-range phonon modes (downward facing triangles) 

calculated as 𝐶𝐶2 ≈ 3𝑘𝑘2 𝑣𝑣𝐽𝐽2⁄ 𝜏𝜏2 for the MD models of f.c.c. (a) Cu, (b) Al, (c) NiEAM1, (d) 

NiEAM2 and (e) Ag over a wide temperature range (see Table 3.1)  using the classical MD 

simulation data versus the Debye heat capacity 𝐶𝐶𝐷𝐷 (solid line). The solid line shows 𝐶𝐶𝐷𝐷 as a 

function of the temperature calculated according to Equation 5.55 by using the Debye 

temperature of 356, 429, 433, 423 and 250 K, respectively (estimated for 2.72, 3.68, 3.23, 3.15 

and 2.16 km/s, respectively).  

 

Thus, it has been have demonstrated that despite the freezing out of some fraction 

of the intermediate- and high-frequency phonon modes at temperatures below the Debye 

temperature, a classical description of the phonon thermal transport properties in the MD 

models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag can be used down to around one quarter 

of the Debye temperature. This is because the acoustic long-range phonon modes, which 

are the main heat carriers responsible for the phonon thermal transport at low 

temperatures, are active down to around one quarter of the Debye temperature, and only 

at lower temperatures do they start to freeze out. 
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At lower temperatures, 𝑇𝑇 < 𝑇𝑇𝑐𝑐, one can expect that the freezing out of the acoustic 

long-range phonon modes will result in the interactions among the acoustic long-range 

phonon modes rapidly becoming less effective in restricting their men-free path. 

Therefore, the quantum effects on the populations of the acoustic long-range phonons at 

temperatures 𝑇𝑇 < 𝑇𝑇𝑐𝑐 will affect, in Equation 5.48, not only the heat capacity but also 

their relaxation times. Thus, at temperatures 𝑇𝑇 < 𝑇𝑇𝑐𝑐, the classical MD simulations data 

are unlikely to provide valuable insight into the prediction of the phonon thermal 

transport properties. 
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Chapter 6: Spectral Representation 
 

In this chapter, it is shown that the information about the parameters of the analytical 

model for the HCACF given by Equation 5.1 (page 81) (and consequently the lattice 

thermal conductivity) can, in principle, be obtained experimentally by scattering or 

absorption measurements. In particular, the power spectrum of the heat flux fluctuations 

and the spectrum of the power of the heat dissipation in the thermal equilibrium in a 

crystal with monatomic lattice are analysed. The theoretical ground for the spectral 

representation of the HCACF, on the basis of Equation 5.1 (page 81), was developed by 

Dr Alexander Evteev24. The peculiarities of the power spectrums of the heat flux 

fluctuations predicted below for the f.c.c. metals can, in principle, be observed in a 

scattering experiment with no gradients imposed on the studied crystal if a proper 

resolution of the frequency range of approximately 1 – 20 THz is accessible. 

Although in the previous section it has been shown that the lattice thermal 

conductivity, 𝑘𝑘𝑝𝑝ℎ, at 𝑇𝑇 < 𝑇𝑇𝐷𝐷 is dominated by the contributions of the acoustic long-

range phonon modes (𝑘𝑘2) and, consequently, the temperature range for the MD 

predictions of 𝑘𝑘𝑝𝑝ℎ can be extended down until 𝐶𝐶2 < 𝐶𝐶𝐷𝐷 (i.e., down to 𝑇𝑇𝑐𝑐), the power 

spectra discussed in this section are supposed to be spread over the whole frequency 

range from 0 to 𝜔𝜔𝐷𝐷. Therefore, certain corrections to the MD predictions need to be 

involved in the high-frequency range at 𝑇𝑇 < 𝑇𝑇D. For this reason, consideration is limited, 

at the present stage, to only the power spectra of the equilibrium fluctuations at 𝑇𝑇 > 𝑇𝑇D. 

At thermal equilibrium, let us consider a fluctuating heat flux 𝑱𝑱 associated with a 

spontaneously fluctuating thermodynamic force 𝑿𝑿 which originates from a 

spontaneously fluctuating temperature gradient: 

 

𝑿𝑿 = −
1
𝑇𝑇
∇𝑇𝑇.                                                               (6.1) 

 

The linear response of 𝑱𝑱 on 𝑿𝑿 can therefore be written in the form [3]: 

                                                           
24 E.V. Levchenko, A.V. Evteev, L. Momenzadeh, I.V. Belova, and G.E. Murch. Phonon-Mediated Heat 
Dissipation in a Monatomic Lattice: Case Study on Ni. Philosophical Magazine, 2015. 95(32): p. 3640-
3673. 
A.V. Evteev, E.V. Levchenko, L. Momenzadeh, I.V. Belova, and G.E. Murch, Insight into Lattice 
Thermal Impedance via Equilibrium Molecular Dynamics: Case Study on Al. Philosophical Magazine, 
2015, DOI:10.1080/14786435.2016.1143569. 
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𝐽𝐽(𝑡𝑡) =
𝑉𝑉
𝑘𝑘B𝑇𝑇

� 𝐶𝐶𝐽𝐽𝐽𝐽(𝑡𝑡′)𝑋𝑋(𝑡𝑡 − 𝑡𝑡′)𝑑𝑑𝑑𝑑′
∞

0

,                                           (6.2) 

 

where: 

 

𝐶𝐶𝐽𝐽𝐽𝐽(𝑡𝑡) =
1
3
〈𝑱𝑱(𝑡𝑡)𝑱𝑱(0)〉 = 〈𝐽𝐽(𝑡𝑡)𝐽𝐽(0)〉                                       (6.3) 

 

is the HCACF, and, for simplicity, the vector notation is dropped. It is straightforward 

to see that the Fourier transformation of Equation 6.2 into the frequency domain can be 

found as: 

 

𝐽𝐽(𝜔𝜔) = 𝑇𝑇𝑍𝑍−1(𝜔𝜔)𝑋𝑋�(𝜔𝜔),                                                   (6.4) 

 

where: 

 

𝐽𝐽(𝜔𝜔) = � 𝐽𝐽(𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑
∞

−∞

,                                                    (6.5) 

 

𝑋𝑋�(𝜔𝜔) = � 𝑋𝑋(𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑
∞

−∞

,                                                    (6.6) 

 

are the Fourier transforms of the fluctuating 𝐽𝐽(𝑡𝑡) and 𝑋𝑋(𝑡𝑡), and 𝑍𝑍(𝜔𝜔) is the thermal 

impedance which can be defined as: 

 

𝑍𝑍−1(𝜔𝜔) =
𝑉𝑉

𝑘𝑘B𝑇𝑇2
� 𝐶𝐶𝐽𝐽𝐽𝐽(𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑
∞

0

.                                           (6.7) 

 

The lattice thermal impedance 𝑍𝑍(𝜔𝜔) = 𝑅𝑅(𝜔𝜔) + 𝑖𝑖𝑖𝑖(𝜔𝜔) due to the phonon-phonon 

scattering processes, which is related to the HCACF given by Equation 5.1 (page 81), 

can be presented as: 
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Re𝑍𝑍−1(𝜔𝜔) =
𝑅𝑅(𝜔𝜔)

|𝑍𝑍(𝜔𝜔)|2 =
𝑉𝑉

2𝑘𝑘B𝑇𝑇2
�

𝐴𝐴1𝜏𝜏1
1 + (𝜔𝜔 + 𝜔𝜔c)2𝜏𝜏12

+
𝐴𝐴1𝜏𝜏1

1 + (𝜔𝜔 − 𝜔𝜔c)2𝜏𝜏12
+

2𝐴𝐴2𝜏𝜏2
1 + 𝜔𝜔2𝜏𝜏22

�,  

                                                                                                                                  (6.8) 

 

Im𝑍𝑍−1(𝜔𝜔) =
−𝑌𝑌(𝜔𝜔)
|𝑍𝑍(𝜔𝜔)|2 =

𝑉𝑉
2𝑘𝑘B𝑇𝑇2

�
𝐴𝐴1𝜏𝜏12(𝜔𝜔 + 𝜔𝜔c)

1 + (𝜔𝜔 + 𝜔𝜔c)2𝜏𝜏12
+

𝐴𝐴1𝜏𝜏12(𝜔𝜔 − 𝜔𝜔c)
1 + (𝜔𝜔 − 𝜔𝜔c)2𝜏𝜏12

+
2𝐴𝐴2𝜏𝜏22𝜔𝜔

1 + 𝜔𝜔2𝜏𝜏22
�.  

                                                                                                                                 (6.9) 

 

where, 𝑅𝑅(𝜔𝜔) = Re𝑍𝑍(𝜔𝜔) and 𝑌𝑌(𝜔𝜔) = Im𝑌𝑌(𝜔𝜔) is the lattice thermal resistance and 

reactance, respectively, while |𝑍𝑍(𝜔𝜔)|2 = 𝑍𝑍(𝜔𝜔)𝑍𝑍∗(𝜔𝜔) = 𝑅𝑅2(𝜔𝜔) + 𝑌𝑌2(𝜔𝜔) (𝑍𝑍∗(𝜔𝜔) =

𝑅𝑅(𝜔𝜔) − 𝑖𝑖𝑖𝑖(𝜔𝜔) is the complex conjugate to 𝑍𝑍(𝜔𝜔)). Also, it was noted that from the 

definition of 𝑍𝑍(𝜔𝜔) given by Equation 6.7 it follows that 𝑍𝑍(−𝜔𝜔) = 𝑍𝑍∗(𝜔𝜔), i.e., 𝑅𝑅(𝜔𝜔) =

 𝑅𝑅(−𝜔𝜔) and 𝑌𝑌(𝜔𝜔) = −𝑌𝑌(−𝜔𝜔) are even and odd functions of 𝜔𝜔, respectively. 

Furthermore, the lattice thermal impedance can be decomposed into the contributions 

𝑍𝑍1(𝜔𝜔) and 𝑍𝑍2(𝜔𝜔) associated with the acoustic short and long-range phonon modes, 

respectively, as: 

 
1

𝑍𝑍(𝜔𝜔)
=

1
𝑍𝑍1(𝜔𝜔) +

1
𝑍𝑍2(𝜔𝜔),                                                             (6.10) 

 

where: 

 

𝑍𝑍1(𝜔𝜔) = 𝑅𝑅1(𝜔𝜔) + 𝑖𝑖𝑌𝑌1(𝜔𝜔),                                                          (6.11) 

 

𝑍𝑍2(𝜔𝜔) = 𝑅𝑅2(𝜔𝜔) + 𝑖𝑖𝑌𝑌2(𝜔𝜔),                                                         (6.12) 

 

so that: 

 

𝑅𝑅1(𝜔𝜔) =  Re𝑍𝑍1(𝜔𝜔) =
𝜏𝜏1′

𝑘𝑘1𝜏𝜏1
�1 +

𝜔𝜔𝑐𝑐2𝜏𝜏12

1 + 𝜔𝜔2𝜏𝜏12
� ,                                (6.13) 

 

𝑌𝑌1(𝜔𝜔) =  Im𝑍𝑍1(𝜔𝜔) = −
𝜔𝜔𝜏𝜏1′

𝑘𝑘1
�1 −

𝜔𝜔𝑐𝑐2𝜏𝜏12

1 + 𝜔𝜔2𝜏𝜏12
�                               (6.14) 
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are the thermal resistance and reactance of the acoustic short range phonon modes, 

respectively, while: 

𝑅𝑅2(𝜔𝜔) =  Re𝑍𝑍2(𝜔𝜔) =
1
𝑘𝑘2

,                                                                (6.15) 

 

𝑌𝑌2(𝜔𝜔) =  Im𝑍𝑍2(𝜔𝜔) = −
𝜔𝜔𝜏𝜏2
𝑘𝑘2

                                                          (6.16) 

 

are the thermal resistance and reactance of the acoustic long-range phonon modes, 

respectively. Similar to 𝑍𝑍(𝜔𝜔),  it can be seen that 𝑍𝑍1(−𝜔𝜔) = 𝑍𝑍1∗(𝜔𝜔) and 𝑍𝑍2(−𝜔𝜔) =

𝑍𝑍2∗(𝜔𝜔), i.e., 𝑅𝑅1(𝜔𝜔) = 𝑅𝑅1(−𝜔𝜔) and 𝑅𝑅2(𝜔𝜔) = 𝑅𝑅2(−𝜔𝜔) are even functions of 𝜔𝜔 while 

𝑌𝑌1(𝜔𝜔) = −𝑌𝑌1(−𝜔𝜔) and 𝑌𝑌2(𝜔𝜔) = −𝑌𝑌2(−𝜔𝜔) are odd functions of 𝜔𝜔. 

First, Equation 6.10 implies that for each frequency 𝜔𝜔 the total impedance 𝑍𝑍(𝜔𝜔) 

is a parallel combination of the two impedances 𝑍𝑍1(𝜔𝜔) and 𝑍𝑍2(𝜔𝜔) associated with the 

acoustic short- and long-range phonon modes respectively. This means that the 

following relations should be satisfied: 

 

𝐽𝐽(𝜔𝜔)𝑍𝑍(𝜔𝜔) = 𝐽𝐽1(𝜔𝜔)𝑍𝑍1(𝜔𝜔) = 𝐽𝐽2(𝜔𝜔)𝑍𝑍2(𝜔𝜔) = 𝑇𝑇𝑋𝑋�(𝜔𝜔),                                 (6.17) 

 

where, 𝐽𝐽1(𝜔𝜔) and 𝐽𝐽2(𝜔𝜔) (𝐽𝐽(𝜔𝜔) = 𝐽𝐽1(𝜔𝜔) + 𝐽𝐽2(𝜔𝜔)) are the Fourier transforms of 𝐽𝐽1(𝑡𝑡) and 

𝐽𝐽2(𝑡𝑡) (see also Equations 6.4 and 6.5). Next, according to the thermodynamics of 

irreversible processes, at sufficiently small departures from thermodynamic equilibrium 

the rate of entropy production per unit volume, 𝜎𝜎, can be expressed in this case as [83-

86]: 

 

𝑇𝑇𝑇𝑇 = 𝑱𝑱𝑱𝑱.                                                                      (6.18) 

 

Assuming the isotropy of 𝑱𝑱 and 𝑿𝑿, taking the inverse Fourier transform of Equations 6.5 

and 6.6, and using Equation 6.4, the averaged over time power dissipation in a crystal 

lattice due to the spontaneously fluctuating thermodynamic force 𝑿𝑿 can be expressed as: 
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Power = 〈𝑇𝑇𝑇𝑇〉 = 3〈𝐽𝐽(𝑡𝑡)𝑋𝑋(𝑡𝑡)〉 =
3

(2𝜋𝜋)2𝑇𝑇
� �〈𝐽𝐽(𝜔𝜔)𝐽𝐽(𝜔𝜔′)〉𝑍𝑍(𝜔𝜔′)𝑒𝑒−𝑖𝑖�𝜔𝜔+𝜔𝜔′�𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝜔𝜔′

∞

−∞

∞

−∞

.      

              (6.19) 

 

According to the general theory of fluctuation [83], the averaged over time product 

〈𝐽𝐽(𝜔𝜔)𝐽𝐽(𝜔𝜔′)〉 can be related to the power spectrum 𝑆𝑆𝐽𝐽(𝜔𝜔) of 𝐽𝐽(𝑡𝑡) as: 

 

〈𝐽𝐽(𝜔𝜔)𝐽𝐽(𝜔𝜔′)〉 = 2𝜋𝜋𝜋𝜋𝐽𝐽(𝜔𝜔)𝛿𝛿(𝜔𝜔 + 𝜔𝜔′),                                                 (6.20) 

 

where, 𝛿𝛿(𝜔𝜔 + 𝜔𝜔′) is the Dirac delta function. This definition suggests that 𝑆𝑆𝐽𝐽(𝜔𝜔) is the 

Fourier transform of the HCACF 𝐶𝐶𝐽𝐽𝐽𝐽(𝑡𝑡) (as any time autocorrelation function, 𝐶𝐶𝐽𝐽𝐽𝐽(𝑡𝑡) 

must be an even function of time 𝐶𝐶𝐽𝐽𝐽𝐽(𝑡𝑡) = 𝐶𝐶𝐽𝐽𝐽𝐽(−𝑡𝑡), so that strictly speaking, the absolute 

value of time |𝑡𝑡| should appear instead of 𝑡𝑡 in the first and second exponents of Equation 

5.1 (page 81)) and, consequently, is an even function of 𝜔𝜔: 

 

𝑆𝑆𝐽𝐽(𝜔𝜔) = � 𝐶𝐶𝐽𝐽𝐽𝐽(𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑
∞

−∞

= 2Re� 𝐶𝐶𝐽𝐽𝐽𝐽(𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑
∞

0

=
2𝑘𝑘B𝑇𝑇2Re𝑍𝑍−1(𝜔𝜔)

𝑉𝑉
=

2𝑘𝑘B𝑇𝑇2𝑅𝑅(𝜔𝜔)
𝑉𝑉|𝑍𝑍(𝜔𝜔)|2 .   

(6.21) 

 

Hence, by Equations 6.19 and 6.20 we have: 

 

Power = 〈𝑇𝑇𝑇𝑇〉 =
3

2𝜋𝜋𝜋𝜋
� 𝑆𝑆𝐽𝐽(𝜔𝜔)𝑍𝑍∗(𝜔𝜔)𝑑𝑑𝑑𝑑
∞

−∞

=
3
𝜋𝜋𝜋𝜋

� 𝑆𝑆𝐽𝐽(𝜔𝜔)𝑅𝑅(𝜔𝜔)𝑑𝑑𝑑𝑑
∞

0

.                (6.22) 

 

Instead of 𝑆𝑆𝐽𝐽(𝜔𝜔), one can alternatively use the power spectra 𝑆𝑆𝐽𝐽1(𝜔𝜔) of 𝐽𝐽1(𝑡𝑡), 𝑆𝑆𝐽𝐽2(𝜔𝜔) of 

𝐽𝐽2(𝑡𝑡) or 𝑆𝑆𝑋𝑋(𝜔𝜔) of 𝑋𝑋(𝑡𝑡), which are defined similarly to Equation 6.20, along with the 

relations given by Equation 6.17 to obtain from Equation 6.19 the other expressions for 

the spectrum of the power dissipation (the integrand in Equation 6.22): 

 

𝑆𝑆Power(𝜔𝜔) =
3
𝜋𝜋𝜋𝜋

𝑆𝑆𝐽𝐽(𝜔𝜔)𝑅𝑅(𝜔𝜔),                                                     (6.23) 
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so that the following relations between the power spectra can be found: 

 

𝑆𝑆𝐽𝐽(𝜔𝜔)|𝑍𝑍(𝜔𝜔)|2 = 𝑆𝑆𝐽𝐽1(𝜔𝜔)|𝑍𝑍1(𝜔𝜔)|2 = 𝑆𝑆𝐽𝐽2(𝜔𝜔)|𝑍𝑍2(𝜔𝜔)|2 = 𝑇𝑇2𝑆𝑆𝑋𝑋(𝜔𝜔) =
2𝑘𝑘B𝑇𝑇2𝑅𝑅(𝜔𝜔)

𝑉𝑉
.  

(6.24) 

 

It is important to point out that the relations given by Equation 6.24 present different 

forms of the fluctuation-dissipation theorem [83, 87] for the case considered of heat 

dissipation due to the phonon-phonon scattering processes. The power spectra 𝑆𝑆𝐽𝐽(𝜔𝜔), 

𝑆𝑆𝐽𝐽1(𝜔𝜔), 𝑆𝑆𝐽𝐽2(𝜔𝜔) and 𝑆𝑆𝑋𝑋(𝜔𝜔) reveal the squared amplitude (intensity, strength or power) of 

the fluctuations of 𝐽𝐽(𝑡𝑡), 𝐽𝐽1(𝑡𝑡), 𝐽𝐽2(𝑡𝑡) and 𝑋𝑋(𝑡𝑡), respectively, at a given frequency 𝜔𝜔. 

Figure 6.1 shows the normalized power spectrum 𝑉𝑉𝑉𝑉𝑋𝑋(𝜔𝜔) 2𝑘𝑘B⁄ = 𝑅𝑅(𝜔𝜔) (in units 

of thermal resistance) of 𝑋𝑋(𝑡𝑡) calculated according to Equation 6.24. It can be seen in 

Figure 6.1 that in contrast to the simplest kinetic theory which essentially assumes a 

single exponential stage of the heat flux relaxation [41], the power spectrum of the 

randomly fluctuating thermodynamic force is not just a constant equal to the reverse of 

the lattice thermal conductivity (as an analogy, note that in this case 𝑅𝑅2(𝜔𝜔) = 𝑘𝑘2−1 =

const for all frequencies). It has a peak of an asymmetrical shape with a maximum 

located at 𝜔𝜔R somewhat below 𝜔𝜔c. Hence, one can conclude that at frequencies near the 

maximum location the perturbations of the equilibrium phonon distribution due to the 

spontaneously fluctuating thermodynamic force 𝑋𝑋(𝑡𝑡) should be the most intensive. 
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Figure 6.1: Normalized power spectrum  𝑉𝑉𝑆𝑆𝑋𝑋(𝜔𝜔) 2𝑘𝑘𝐵𝐵⁄ = 𝑅𝑅(𝜔𝜔)  of the spontaneously 

fluctuating thermodynamic force 𝑋𝑋(𝑡𝑡) in thermal equilibrium at different temperatures above 𝑇𝑇𝐷𝐷 

for the MD models of f.c.c. (a) Cu, (b) Al, (c) NiEAM1, (d) NiEAM2 and (e) Ag predicted on the 

basis of the analytical model for the heat current autocorrelation function given by Equation 5.1. 
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Figure 6.2 shows the normalized power spectra  𝑉𝑉𝑉𝑉𝐽𝐽(𝜔𝜔) 2𝑘𝑘B𝑇𝑇2⁄ =

𝑅𝑅(𝜔𝜔) |𝑍𝑍(𝜔𝜔)|2⁄ , 𝑉𝑉𝑉𝑉𝐽𝐽1(𝜔𝜔) 2𝑘𝑘B𝑇𝑇2⁄ = 𝑅𝑅(𝜔𝜔) |𝑍𝑍1(𝜔𝜔)|2⁄  and 𝑉𝑉𝑉𝑉𝐽𝐽2(𝜔𝜔) 2𝑘𝑘B𝑇𝑇2⁄ =

𝑅𝑅(𝜔𝜔) |𝑍𝑍2(𝜔𝜔)|2⁄  (in units of thermal conductivity) of 𝐽𝐽(𝑡𝑡), 𝐽𝐽1(𝑡𝑡) and 𝐽𝐽2(𝑡𝑡) calculated 

according to Equation 6.24. Meanwhile, Figure 6.3 shows the frequency dependences 

of the magnitude of the impedances |𝑍𝑍(𝜔𝜔)|, |𝑍𝑍1(𝜔𝜔)| and |𝑍𝑍2(𝜔𝜔)|, along with the 

resistances 𝑅𝑅1(𝜔𝜔) and 𝑅𝑅2(𝜔𝜔). The magnitude of the impedances determines the 

responses of 𝐽𝐽(𝑡𝑡), 𝐽𝐽1(𝑡𝑡) and 𝐽𝐽2(𝑡𝑡) on 𝑋𝑋(𝑡𝑡) at a given frequency 𝜔𝜔, so that: 

 

 

�
𝑆𝑆𝐽𝐽(𝜔𝜔)

𝑇𝑇2𝑆𝑆𝑋𝑋(𝜔𝜔) = |𝑍𝑍(𝜔𝜔)|−1,�
𝑆𝑆𝐽𝐽1(𝜔𝜔)
𝑇𝑇2𝑆𝑆𝑋𝑋(𝜔𝜔) = |𝑍𝑍1(𝜔𝜔)|−1,�

𝑆𝑆𝐽𝐽2(𝜔𝜔)
𝑇𝑇2𝑆𝑆𝑋𝑋(𝜔𝜔) = |𝑍𝑍2(𝜔𝜔)|−1.     (6.25) 
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Figure 6.2: Normalized power  spectra  𝑉𝑉𝑆𝑆𝐽𝐽(𝜔𝜔)
2𝑘𝑘𝐵𝐵𝑇𝑇2

= 𝑅𝑅(𝜔𝜔)
|𝑍𝑍(𝜔𝜔)|2 (solid line), 𝑉𝑉𝑆𝑆𝐽𝐽1(𝜔𝜔)

2𝑘𝑘𝐵𝐵𝑇𝑇2
= 𝑅𝑅(𝜔𝜔)

|𝑍𝑍1(𝜔𝜔)|2 (dashed 

line) and  𝑉𝑉𝑆𝑆𝐽𝐽2(𝜔𝜔)
2𝑘𝑘𝐵𝐵𝑇𝑇2

= 𝑅𝑅(𝜔𝜔)
|𝑍𝑍2(𝜔𝜔)|2  (blue dash dotted line) of the equilibrium fluctuations of the heat 

fluxes 𝐽𝐽(𝑡𝑡), 𝐽𝐽1(𝑡𝑡) and 𝐽𝐽2(𝑡𝑡), respectively, at different temperatures above 𝑇𝑇𝐷𝐷 for the MD models 

of f.c.c. (a) Cu, (b) Al, (c) NiEAM1, (d) NiEAM2 and (e) Ag predicted on the basis of the analytical 

model for the heat current autocorrelation function given by Equation 5.1. 
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Figure 6.3: Magnitude of the impedances |𝑍𝑍(𝜔𝜔)| (solid line), |𝑍𝑍1(𝜔𝜔)| (thick blue dashed line) 

and |𝑍𝑍2(𝜔𝜔)| (thick blue dotted line) along with the resistances 𝑅𝑅1(𝜔𝜔) (thin dashed line) and 

𝑅𝑅2(𝜔𝜔) (thin dotted line) at different temperatures above 𝑇𝑇D for the MD models of f.c.c. (a) Cu, 

(b) Al, (c) NiEAM1, (d) NiEAM2 and (e) Ag predicted on the basis of the analytical model for the 

heat current autocorrelation function given by Equation 5.1. 
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As can be seen in Figure 6.2, at very low frequencies, when 𝜔𝜔 ≪ 𝜏𝜏2−1 (for example, 

in the f.c.c. Cu, 𝜏𝜏2−1 was approximately 0.6 THz at 400 K (see Table 6.1 for more 

details)), the amplitude of the fluctuations of 𝐽𝐽(𝑡𝑡) decreased only very slightly from their 

maximum values as the frequency increased from 𝜔𝜔 = 0. In this frequency range, the 

amplitude of the fluctuations of 𝐽𝐽(𝑡𝑡) is mainly determined by the scattering of the 

acoustic long-range phonon modes. It can be seen in Figures 6.1 – 6.3 that, at 𝜔𝜔 ≪ 𝜏𝜏2−1, 

the responses can be estimated as |𝑍𝑍(𝜔𝜔)|−1 ≈ 𝑅𝑅−1(𝜔𝜔) ≈ 𝑘𝑘, |𝑍𝑍1(𝜔𝜔)|−1 ≈ 𝑅𝑅1−1(𝜔𝜔) ≈

𝑘𝑘1, and |𝑍𝑍2(𝜔𝜔)|−1 ≈ 𝑅𝑅2−1(𝜔𝜔) = 𝑘𝑘2. At 𝜔𝜔 ≫ 𝜏𝜏2−1, the response |𝑍𝑍2(𝜔𝜔)|−1 becomes 

practically independent of the relaxation time (i.e., purely reactive) so that |𝑍𝑍2(𝜔𝜔)|−1 ≈

|𝑌𝑌2(𝜔𝜔)|−1 = 𝑘𝑘2 𝜔𝜔𝜏𝜏2⁄ = 𝐶𝐶2𝑣𝑣𝐽𝐽2 3𝜔𝜔⁄ . As a result, the temperature dependence of the 

response |𝑍𝑍2(𝜔𝜔)|−1 at 𝜔𝜔 ≫ 𝜏𝜏2−1 is basically controlled by the temperature dependence 

of the product 𝐶𝐶2𝑣𝑣𝐽𝐽2. 

The impedance |𝑍𝑍1(𝜔𝜔)| of the acoustic short-range phonon modes has a minimum 

at a frequency 𝜔𝜔01, which is slightly above 𝜔𝜔c (see Figure 6.3). This frequency 𝜔𝜔01 can 

be defined as the undamped resonance frequency of the heat flux 𝐽𝐽1(𝑡𝑡) driven by 

hypothetical external periodic temperature perturbations (i.e., this frequency may also 

be called the driven resonance frequency). Furthermore, it can be noted in Figure 6.2 

that 𝑆𝑆𝐽𝐽1(𝜔𝜔) has a maximum at a frequency 𝜔𝜔d1, which is located between 𝜔𝜔R and 𝜔𝜔01. 

The frequency 𝜔𝜔d1 at the location of the maximum on 𝑆𝑆𝐽𝐽1(𝜔𝜔) determines the highest 

amplitude of the fluctuation of the heat flux 𝐽𝐽1(𝑡𝑡) at thermal equilibrium (i.e., the 

response on 𝑋𝑋(𝑡𝑡)). As a result, the frequency 𝜔𝜔d1 can be defined as the damped 

resonance frequency of the heat flux 𝐽𝐽1(𝑡𝑡). It is also important to point out that the 

locations of the minimum of |𝑍𝑍2(𝜔𝜔)| and the maximum of 𝑆𝑆𝐽𝐽2(𝜔𝜔) of the acoustic long-

range phonon modes coincided with each other, so that 𝜔𝜔02 = 𝜔𝜔d2 = 0. Thus, 

considering that the cut-off of the density of the acoustic long-range phonon modes is at 

the origin, the matching of 𝜔𝜔d1 and 𝜔𝜔c is an additional very important piece of evidence 

of the fact that the cut-off of the density of the acoustic short-range phonon modes occurs 

in the vicinity of 𝜔𝜔c. In other words, between the lowest energy level of the acoustic 

short-range phonon modes and the origin there is an energy gap of the order of ~ℏ𝜔𝜔c 

(or ~𝑘𝑘B𝑇𝑇c). Figure 6.4 shows the temperature dependences of the 

frequencies 𝜔𝜔c, 𝜔𝜔R, 𝜔𝜔01, and 𝜔𝜔d1. In this figure, for comparitive reasons, the data at 𝑇𝑇 <

𝑇𝑇D is included. Indeed, it is interesting to note that, at high temperatures, 𝜔𝜔c and 𝜔𝜔d1 are 
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very well matched with 𝜔𝜔c ≈ 𝜔𝜔d1 (strong anharmonic effects), while at low 

temperatures 𝜔𝜔c tended to approach 𝜔𝜔01 (quasi-harmonic vibrations). 
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Figure 6.4: Temperature dependences of the characteristic frequencies 𝜔𝜔c (circles), 𝜔𝜔R 

(diamonds), 𝜔𝜔01 (solid downward facing triangles), 𝜔𝜔d1 (squares), and 𝜔𝜔01
′ =

𝜔𝜔c�1− (𝜔𝜔c𝜏𝜏1)−2  (upward facing triangles) for the MD models of f.c.c. (a) Cu, (b) Al, (c) 

NiEAM1, (d) NiEAM2 and (e) Ag in a wide temperature range (see Table 3.1). Open downward 

facing triangles show an estimation of 𝜔𝜔01 on the basis of 𝜔𝜔c (via 𝜔𝜔01
′ ) and 𝜏𝜏1 according to an 

approximate relation given by the quartic equation (𝜔𝜔01 𝜔𝜔01
′⁄ )4 − (𝜔𝜔01 𝜔𝜔01

′⁄ )3 −

(𝜔𝜔01 𝜔𝜔01
′⁄ )(𝜔𝜔01′ 𝜏𝜏1)−4 − (𝜔𝜔01

′ 𝜏𝜏1)−2 = 0. See text for further details. 

 

 

Overall, it can be seen in Figure 6.3 that in the frequency range 0 ≤ 𝜔𝜔 ≲ 𝜔𝜔01 the 

impedance |𝑍𝑍1(𝜔𝜔)| was practically determined by the resistance 𝑅𝑅1(𝜔𝜔). The resistance 

𝑅𝑅1(𝜔𝜔) itself, according to Equation 6.13, decreases from 𝑅𝑅1(𝜔𝜔) ≈ 𝑘𝑘1−1 at low 

frequencies to 𝑅𝑅1(𝜔𝜔) ≈ 𝜏𝜏1′ 𝑘𝑘1𝜏𝜏1⁄  at high frequencies. Meanwhile, according to Equation 

6.14, the reactance 𝑌𝑌1(𝜔𝜔), increasing from zero, takes positive values at low frequencies, 

passes via a maximum and then a zero value, and finally changes as 𝑌𝑌1(𝜔𝜔) ≈

−𝜔𝜔 𝜏𝜏1′ 𝑘𝑘1⁄ (1 − 𝜔𝜔c2 𝜔𝜔2⁄ ) at high frequencies 𝜔𝜔 ≫ 𝜏𝜏1−1 (for example, in the f.c.c. Cu, 𝜏𝜏1−1 

was approximately 6.4 THz at 400 K (see Table 6.1 for further details)). In this context, 

it can be noted that in the case if 𝑅𝑅1(𝜔𝜔) were constant, i.e., independent of the frequency, 
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|𝑍𝑍1(𝜔𝜔)| would have a minimum exactly at the frequency where 𝑌𝑌1(𝜔𝜔) passes via a zero 

value. Let us denote this frequency as 𝜔𝜔01
′ . This frequency can be readily found from 

Equation 6.14 as  𝑌𝑌1(𝜔𝜔01
′ ) = 0, so that it is 𝜔𝜔01

′ = 𝜔𝜔c�1 − (𝜔𝜔c𝜏𝜏1)−2. In this study, 

however, 𝑅𝑅1(𝜔𝜔) decreased with a frequency which resulted in the minimum of |𝑍𝑍1(𝜔𝜔)| 

shifting towards a higher frequency 𝜔𝜔01 > 𝜔𝜔01
′ . For example, in this case 𝑅𝑅1(𝜔𝜔01

′ ) =

2 𝜏𝜏1′ 𝑘𝑘1𝜏𝜏1⁄  took a value which was two times higher than its high-frequency limit. Thus, 

if the difference between 𝜔𝜔01 and 𝜔𝜔01
′  is relatively small, one may use the expansion of 

𝑌𝑌1(𝜔𝜔) to first order in (𝜔𝜔 − 𝜔𝜔01
′ ) inside the frequency range between 𝜔𝜔01

′  and 𝜔𝜔01 to 

derive an approximate relation for 𝜔𝜔01 and 𝜔𝜔c (via 𝜔𝜔01
′ ). Indeed, noticing from 

Equations 6.13 and 6.14 a useful relation for 𝑅𝑅1(𝜔𝜔) and 𝑌𝑌1(𝜔𝜔) of the form 𝑅𝑅1(𝜔𝜔) =

𝑅𝑅1(𝜔𝜔01
′ ) + 𝑌𝑌1(𝜔𝜔) 𝜔𝜔𝜏𝜏1⁄ , one may employ the following approximations 𝑌𝑌1(𝜔𝜔) ≈

−𝑅𝑅1(𝜔𝜔01
′ )(𝜔𝜔01

′ 𝜔𝜔c⁄ )2(𝜔𝜔 − 𝜔𝜔01
′ )𝜏𝜏1 and 𝑅𝑅1(𝜔𝜔) ≈ 𝑅𝑅1(𝜔𝜔01

′ )(𝜔𝜔01
′ 𝜔𝜔c⁄ )2(𝜔𝜔01

′ 𝜔𝜔⁄ −

(𝜔𝜔01
′ 𝜏𝜏1)−2) inside the frequency range between 𝜔𝜔01

′  and 𝜔𝜔01. Then, using these 

approximations for 𝑅𝑅1(𝜔𝜔) and 𝑌𝑌1(𝜔𝜔) in setting the derivative of |𝑍𝑍1(𝜔𝜔)| at zero for 𝜔𝜔 =

𝜔𝜔01, one can readily obtain the following quartic equation for the ratio 𝜔𝜔01 𝜔𝜔01
′⁄ > 1: 

(𝜔𝜔01 𝜔𝜔01
′⁄ )4 − (𝜔𝜔01 𝜔𝜔01

′⁄ )3 − (𝜔𝜔01 𝜔𝜔01
′⁄ )(𝜔𝜔01

′ 𝜏𝜏1)−4 − (𝜔𝜔01
′ 𝜏𝜏1)−2 = 0. Figure 6.4, 

along with 𝜔𝜔c, 𝜔𝜔R, 𝜔𝜔01, and 𝜔𝜔d1, also show the temperature dependence of 𝜔𝜔01
′ , as well 

as of 𝜔𝜔01, found as a numerical solution of the quartic equation (this study is not 

concerned with an analytical solution of the quartic equation). It can be seen in Figure 

6.4, which as the temperature increases, the difference between 𝜔𝜔01 and 𝜔𝜔01
′  also 

increases. For example, in the f.c.c. Cu, their ratio 𝜔𝜔01 𝜔𝜔01
′⁄  was approximately 1.13 and 

1.34 at 40 and 400 K, respectively (see Table 6.1 for further details). As a result, the 𝜔𝜔01 

estimated from the quartic equation gave excellent agreement with the actual value of 

𝜔𝜔01 up to the temperatures slightly above the Debye temperature, while such an 

estimation becomes much less reliable as the temperature approaches the melting 

temperature. 

With increasing frequency at 𝜔𝜔 > 𝜔𝜔c ∼ 𝜔𝜔01, the ability of the acoustic 

short-range phonon modes to be scattered for the time of approximately 𝜋𝜋 𝜔𝜔⁄  gradually 

decreased. As a result, at high frequencies, the response |𝑍𝑍1(𝜔𝜔)|−1 becomes mainly 

dominated by the reactance 𝑌𝑌1(𝜔𝜔). It was noted, for example, that at frequencies close 

to the Debye frequency the ratio |𝑌𝑌1(𝜔𝜔)| 𝑅𝑅1(𝜔𝜔),⁄  in f.c.c. Cu, can be roughly estimated 

as approximately 5 and 3.5 at 400 and 1300 K respectively (see Table 6.1 for further 

details). 
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Table 6.1: 𝝉𝝉𝟐𝟐−𝟏𝟏, 𝝉𝝉𝟏𝟏−𝟏𝟏,𝝎𝝎𝟎𝟎𝟎𝟎
𝝎𝝎𝟎𝟎𝟎𝟎
′� , |𝒀𝒀𝟏𝟏(𝝎𝝎)|

𝑹𝑹𝟏𝟏(𝝎𝝎)�  of f.c.c. (a) Cu, (b) Al, (c) NiEAM1, (d) NiEAM2 

and (e) Ag models at some temperatures. All quantities presented in this table are introduced in 

the text (see Figures 6.1− 6.4 for further details). 

Metals Temperature 𝜏𝜏2−1 (THz) 𝜏𝜏1−1(THz) 
𝜔𝜔01

𝜔𝜔01′
 |𝑌𝑌1(𝜔𝜔)|

𝑅𝑅1(𝜔𝜔)  

Cu 

40   1.13  

400 0.6 6.4 1.34 5.0 

1200 2.7    

1300  11.8  3.5 

Al 

100   1.06  

500 1.0 8.3 1.28 6.0 

1000 3.2 12.6 2.32 4.0 

NiEAM1 

100   1.15  

500 0.5 7.6 1.34 7.0 

1700 2.14 15.8  3.8 

NiEAM2 

100   1.14  

500 0.3 6.0 1.19 8.5 

1700 2.2 11.2 3.06 5.0 

Ag 

40   1.11  

300 0.5 4.6 1.31 6.0 

1100 2.0 8.8  3.0 

 

Thus, this analysis shows that in a monatomic lattice, especially at sufficiently low 

temperatures, there might be a frequency “window” 𝜏𝜏2−1 ≪ 𝜔𝜔 ≪ 𝜔𝜔c for an external 

periodic temperature perturbation to create a response state in which: (i) the acoustic 

short-range phonon modes have always enough time to be equilibrated with respect to 

the lattice; while (ii) the acoustic long-range phonon modes are expected to be 

equilibrated with respect to each other but do not have enough time to be equilibrated 

with respect to the lattice. As a result, such an external periodic temperature perturbation 

can result in thermal waves (so called second sound [87, 88]) being propagated in the 

lattice via the acoustic long-range phonon modes. 

Lastly, by  using Equations 6.10 and 6.24, the power spectrum 𝑆𝑆𝐽𝐽(𝜔𝜔) of the 

fluctuations of the total heat flux 𝐽𝐽(𝑡𝑡) and the total impedance |𝑍𝑍(𝜔𝜔)| can be readily 

represented via 𝑆𝑆𝐽𝐽1(𝜔𝜔) and 𝑆𝑆𝐽𝐽2(𝜔𝜔), and via |𝑍𝑍1(𝜔𝜔)| and |𝑍𝑍2(𝜔𝜔)|, respectively, as 
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𝑆𝑆𝐽𝐽(𝜔𝜔) = 𝑆𝑆𝐽𝐽1(𝜔𝜔)𝑅𝑅1(𝜔𝜔) 𝑅𝑅(𝜔𝜔)⁄ + 𝑆𝑆𝐽𝐽2(𝜔𝜔)𝑅𝑅2(𝜔𝜔) 𝑅𝑅(𝜔𝜔)⁄  and |𝑍𝑍(𝜔𝜔)|−2 =

|𝑍𝑍1(𝜔𝜔)|−2 𝑅𝑅1(𝜔𝜔) 𝑅𝑅(𝜔𝜔)⁄ + |𝑍𝑍2(𝜔𝜔)|−2 𝑅𝑅2(𝜔𝜔) 𝑅𝑅(𝜔𝜔)⁄ , or, alternatively, as 𝑆𝑆𝐽𝐽(𝜔𝜔) =

𝑆𝑆𝐽𝐽1(𝜔𝜔)𝑌𝑌1(𝜔𝜔) 𝑌𝑌(𝜔𝜔)⁄ + 𝑆𝑆𝐽𝐽2(𝜔𝜔)𝑌𝑌2(𝜔𝜔) 𝑌𝑌(𝜔𝜔)⁄  and |𝑍𝑍(𝜔𝜔)|−2 = |𝑍𝑍1(𝜔𝜔)|−2 𝑌𝑌1(𝜔𝜔) 𝑌𝑌(𝜔𝜔)⁄ +

|𝑍𝑍2(𝜔𝜔)|−2 𝑌𝑌2(𝜔𝜔) 𝑌𝑌(𝜔𝜔)⁄ . As a result, it can be seen in Figures 6.2 and 6.3 that 𝑆𝑆𝐽𝐽(𝜔𝜔) and 

|𝑍𝑍(𝜔𝜔)| represent some appropriately weighted combinations of the features discussed 

above of 𝑆𝑆𝐽𝐽1(𝜔𝜔) and 𝑆𝑆𝐽𝐽2(𝜔𝜔), and |𝑍𝑍1(𝜔𝜔)| and |𝑍𝑍2(𝜔𝜔)|, respectively. Meanwhile, Figure 

6.5 shows the spectra of the power dissipation for the equilibrium thermal fluctuations 

for the MD models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag. According to Equations 6.23 

and 6.24, this spectrum 𝑆𝑆Power(𝜔𝜔) can be defined by the product of 𝑆𝑆𝐽𝐽(𝜔𝜔) and 𝑆𝑆𝑋𝑋(𝜔𝜔) 

as 𝑆𝑆Power(𝜔𝜔) = 3𝑉𝑉
2𝜋𝜋𝜋𝜋B𝑇𝑇

𝑆𝑆𝐽𝐽(𝜔𝜔)𝑆𝑆𝑋𝑋(𝜔𝜔). The spectra 𝑆𝑆𝐽𝐽(𝜔𝜔) and 𝑆𝑆Power(𝜔𝜔) can, in principle, 

be obtained experimentally by scattering and absorption measurements. Thus, the 

considered spectral representation of the analytical model for the HCACF given by 

Equation 5.1 (page 81) could be used in the future for the interpretation of spectroscopic 

measurements of phonon dynamics if a proper resolution of the frequency range of 

approximately 1 – 20 THz is routinely accessible. 
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Figure 6.5: Spectra of the power dissipation 𝑆𝑆Power(𝜔𝜔) = 3𝑉𝑉
2𝜋𝜋𝜋𝜋B𝑇𝑇

𝑆𝑆𝐽𝐽(𝜔𝜔)𝑆𝑆𝑋𝑋(𝜔𝜔) for the 

equilibrium thermal fluctuations at different temperatures above 𝑇𝑇D for the MD models of f.c.c. 

(a) Cu, (b) Al, (c) NiEAM1, (d) NiEAM2 and (e) Ag predicted on the basis of the analytical model 

for the heat current autocorrelation function given by Equation 5.1. 
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Overall, it should be noted that despite having principally restricted the present 

work to an investigation of the lattice thermal resistance of a cubic (isotropic case) 

Bravais lattice, using MD models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag as case studies, 

the results are not difficult to generalize for other (anisotropic) Bravais lattices in the 

future, as well as for non-Bravais lattices which also permit optical phonon modes. 

Furthermore, along with the phonon-phonon interactions, other phonon scattering 

processes can be included in the considerations. In addition, aside from the steady state 

Boltzmann equation in the presence of a constant temperature gradient considered (see 

Chapter 8), the study results in the spectral representation of the heat flux fluctuations 

in thermal equilibrium to be effectively used to formulate a generalized Boltzmann 

equation valid for the applied thermal disturbance of an arbitrary finite frequency. In 

particular, the fundamental understanding of thermal transport on periodic temperature 

perturbations is of great interest in the intelligent development of electronic devices 

operating at high frequencies. 
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Chapter 7: Links to the Experimental Data and 

Assessment of the Scaling Relations of the Lattice 

Thermal Conductivity 
 

Figure 7.1 compares the results for the lattice thermal conductivity of the MD models of 

f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag with a compilation [11] of experimental 

measurements of the thermal conductivity over wide temperature ranges (see Table 3.1), 

which obviously also includes contributions due to the electron-phonon and phonon-

electron scattering processes. Since some confusion may arise here, it is apposite to 

recall that the quantity calculated in this work is actually the component of the lattice 

thermal conductivity, 𝑘𝑘ph−ph, determined by the phonon-phonon scattering processes. 

As a first approximation, one may estimate the contributions, 𝑘𝑘el−ph ≈ 𝑘𝑘el and 𝑘𝑘ph−el, 

due to the electron-phonon and phonon-electron scattering to the total thermal 

conductivity of the MD models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag by using a 

simplified model of the electron-phonon interactions in a metal [17, 21, 25] along with 

this study’s data for 𝑘𝑘ph−ph and the experimental data [11] for 𝑘𝑘. Besides ignoring the 

effects of the electron-electron scattering, the main simplifications used in the model to 

evaluate 𝑘𝑘el−ph and 𝑘𝑘ph−el include [17, 21, 25]: spherical Fermi surface, electron-

phonon scattering N-processes only, Thomas-Fermi approximation, etc. Thus, one may 

employ the following relation [17, 21, 25]: 

 

𝑘𝑘 ≈ 𝑘𝑘el−ph + �𝑘𝑘ph−ph−1 + 𝑘𝑘ph−el−1 �
−1

,                                         (7.1) 

 

with 𝑘𝑘el−ph and 𝑘𝑘ph−el given by [17] (for more details, see also [14, 21, 89, 90]) 

 

𝑘𝑘el−ph−1 =
𝐴𝐴

𝐿𝐿0𝑇𝑇D
�
𝑇𝑇
𝑇𝑇D
�
4

𝐽𝐽5 �
𝑇𝑇D
𝑇𝑇
��1 +

3
𝜋𝜋2

�
𝑛𝑛e
2
�
2
3
�
𝑇𝑇D
𝑇𝑇
�
2

−
1

2𝜋𝜋2
𝐽𝐽7 �

𝑇𝑇D
𝑇𝑇 �

𝐽𝐽5 �
𝑇𝑇D
𝑇𝑇 �

� ,             (7.2) 
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𝑘𝑘ph−el−1 =
𝐴𝐴

𝐿𝐿0𝑇𝑇D
𝜋𝜋2𝑛𝑛e2

27
�
𝑇𝑇D
𝑇𝑇
�
2 𝐽𝐽5 �

𝑇𝑇D
𝑇𝑇 �

�𝐽𝐽4 �
𝑇𝑇D
𝑇𝑇 ��

2 ,                                     (7.3) 

 

where 𝐴𝐴 is a constant which represents the strength of the electron-phonon interactions, 

𝐿𝐿0 = 2.445 WΩK-2 is the ideal Lorenz number, 𝑛𝑛e is the number of free electrons per 

atom, and 𝐽𝐽𝑛𝑛 �
𝑇𝑇D
𝑇𝑇
� is given by: 

 

𝐽𝐽𝑛𝑛 �
𝑇𝑇D
𝑇𝑇
� = �

𝑥𝑥𝑛𝑛𝑒𝑒𝑥𝑥

(𝑒𝑒𝑥𝑥 − 1)2 𝑑𝑑𝑑𝑑

𝑇𝑇D
𝑇𝑇�

0

.                                               (7.4) 

 

First, it should be noted, as can be seen in Figures 7.1(c1) and 7.1(d1), that the total 

thermal conductivity of f.c.c. NiEAM1 and NiEAM2 above the Curie temperature25 628 K 

increased with temperature. In this context, it was noted in [89] that it would seem that 

abnormal complications are present with the electronic contribution to the thermal 

conductivity of nickel above the magnetic transformation point. For this reason, this 

study limits itself to a consideration of only the temperature range of 100 – 600 K (see 

Figures 7.1(c1) and 7.1(d1)). Next, it is known [21] that various experiments indicate that 

the number of free electrons per atom of Ni is 𝑛𝑛e ≈ 0.54. Then it is straightforward to 

show that Equation 7.1 can be rearranged to obtain a quadratic equation for the 

ratio 𝑘𝑘ph−ph 𝑘𝑘ph−el⁄ , as: 

 

�
𝑘𝑘ph−ph
𝑘𝑘ph−el

�
2

+ �1 −
𝑘𝑘ph−ph
𝑘𝑘

−
𝑘𝑘ph−ph
𝑘𝑘

𝑘𝑘el−ph
𝑘𝑘ph−el

�
𝑘𝑘ph−ph
𝑘𝑘ph−el

−
𝑘𝑘ph−ph
𝑘𝑘

𝑘𝑘el−ph
𝑘𝑘ph−el

= 0.       (7.5) 

                                                           
25 The Curie temperature is a critical temperature for a ferromagnetic material above which this temperature 
ferromagnetic material becomes paramagnetic. 
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Hence, a meaningful positive-root solution of the quadratic equation for the ratio 

𝑘𝑘ph−ph 𝑘𝑘ph−el⁄  can be readily found as: 

 

𝑘𝑘ph−ph
𝑘𝑘ph−el

=
1
2
�
𝑘𝑘ph−ph
𝑘𝑘

𝑘𝑘el−ph
𝑘𝑘ph−el

+
𝑘𝑘ph−ph
𝑘𝑘

− 1 + √𝐷𝐷� ,                                          (7.6) 

 

where: 

 

𝐷𝐷 = �1 −
𝑘𝑘ph−ph
𝑘𝑘

−
𝑘𝑘ph−ph
𝑘𝑘

𝑘𝑘el−ph
𝑘𝑘ph−el

�
2

+ 4
𝑘𝑘ph−ph
𝑘𝑘

𝑘𝑘el−ph
𝑘𝑘ph−el

> 0.                     (7.7) 

 

Finally, by evaluating numerically the ratio 𝑘𝑘el−ph 𝑘𝑘ph−el⁄  from Equations 7.2 – 7.4 (𝑛𝑛e 

is approximately 1, 3, 0.54, 0.54 and 1, for the MD models of f.c.c. Cu, Al, NiEAM1, 

NiEAM2 and Ag, respectively), as well as the ratio 𝑘𝑘ph−ph 𝑘𝑘⁄ , from the data for 𝑘𝑘ph−ph 

and the experimental data [11] for 𝑘𝑘, the temperature dependence of the ratio 

𝑘𝑘ph−ph 𝑘𝑘ph−el⁄  and, consequently, the temperature dependences of 𝑘𝑘ph−el, 𝑘𝑘el−ph, and 

𝑘𝑘ph = 𝑘𝑘ph−ph�1 + 𝑘𝑘ph−ph 𝑘𝑘ph−el⁄ �
−1

 can be estimated in a wide temperature range.  

Thus, the estimations for the temperature dependences of 𝑘𝑘ph−el, 𝑘𝑘el−ph, and 𝑘𝑘ph 

are shown in Figures 7.1(a1), 7.1(b1), 7.1(c1), 7.1 (d1) and 7.1(e1) for the MD models of 

f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag, respectively, along with the study’s data for 𝑘𝑘ph−ph 

and the experimental data [11] for 𝑘𝑘. It can be seen in Figure 7.1 (a1, b1, c1, d1 and e1) 

that the electronic contribution 𝑘𝑘el (≈ 𝑘𝑘el−ph) to the total thermal conductivity of the 

MD models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag dominated the considered 

temperature ranges. Nonetheless, the phonon thermal conductivity of the MD models of 

f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag increased as the temperature decreased. 
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Furthermore, 𝑘𝑘ph−ph and 𝑘𝑘ph−el were calculated for a high temperature range (𝑇𝑇 ≫

𝑇𝑇D) that 𝑘𝑘el−ph and 𝑘𝑘ph−el  for high temperature limits are given by: 

 

𝑘𝑘el−ph−1 =
𝐴𝐴

𝐿𝐿0𝑇𝑇D
�
𝑇𝑇
𝑇𝑇D
�
4

𝐽𝐽5 �
𝑇𝑇D
𝑇𝑇
� ,                                                 (7.8) 

 

𝑘𝑘ph−el−1 =
𝐴𝐴

𝐿𝐿0𝑇𝑇D
�
𝑇𝑇𝐷𝐷
𝑇𝑇
� 𝐽𝐽5 �

𝑇𝑇𝐷𝐷
𝑇𝑇
�

𝜋𝜋2𝑛𝑛e2

�27
9 � �

𝑇𝑇𝐷𝐷
𝑇𝑇 �

6 ,                             (7.9) 

 

that at high temperatures (𝑇𝑇 ≫ 𝑇𝑇D), 𝐽𝐽5 �
𝑇𝑇D
𝑇𝑇
� = 1

4
�𝑇𝑇𝐷𝐷
𝑇𝑇
�
4
, so that Equations 7.8 and 7.9 can 

be rearranged as: 

 

𝑘𝑘el−ph−1 =
𝐴𝐴

4𝐿𝐿0𝑇𝑇D
,                                                                        (7.10) 

 

𝑘𝑘ph−el−1 =
𝐴𝐴

𝐿𝐿0𝑇𝑇D
𝜋𝜋2𝑛𝑛e2

12
.                                                                (7.11) 

 

Figure 7.1(a1) shows that the phonon thermal conductivity of f.c.c. Cu increased 

as the temperature decreased down to 90 K. In addition, it can be seen in Figure 7.1(a2) 

that the phonon contribution 𝑘𝑘ph to the total thermal conductivity of f.c.c. Cu can be 

estimated as approximately 0.5 % at 1300 K (assuming 𝑘𝑘ph ≈ 𝑘𝑘ph−ph at 𝑇𝑇 ≫ 𝑇𝑇D), and 

approximately 7 % at 90 K. Also, it was noted that the use of 𝑘𝑘ph−ph instead of 𝑘𝑘ph led 

to an overestimation of the phonon contribution to the total thermal conductivity by 

approximately 0.1% and 3% at 1200 and 90 K respectively (see Figure 7.1(a2)). Figure 

7.1 shows that the phonon thermal conductivity of f.c.c. Al increased as the temperature 

decreased down to 100 K. Moreover, it can be seen in Figure 7.1(b1) that the phonon 
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contribution 𝑘𝑘ph to the total thermal conductivity of f.c.c. Al can be estimated as 

approximately 1% at 1000 K (assuming 𝑘𝑘ph ≈ 𝑘𝑘ph−ph at 𝑇𝑇 ≫ 𝑇𝑇D), and approximately 

8% at 100 K. Also, it was noted that the use of 𝑘𝑘ph−ph instead of 𝑘𝑘ph led to an 

overestimation of the phonon contribution to the total thermal conductivity by 

approximately 0.3% and 4% at 1000 and 100 K, respectively (see Figure 7.1(b2)). In 

f.c.c. NiEAM1 and NiEAM2, the phonon thermal conductivity contribution to the total 

thermal conductivity had a maximum at 200 K and started to decrease at 100 K (see 

Figures 7.1(c1) and 7.1(d1)). In addition, it can be seen in Figures 7.1(c2) and 7.1(d2) that 

the phonon contribution 𝑘𝑘ph to the total thermal conductivity of the MD models of f.c.c. 

NiEAM1 and NiEAM2 can be estimated as approximately 4% and 4% at 1500 K (assuming 

𝑘𝑘ph ≈ 𝑘𝑘ph−ph at 𝑇𝑇 ≫ 𝑇𝑇D), approximately 14.4% and 20.7% at 600 K, approximately 

16.8% and 34.1% at 200 K, and approximately 15.6%  and 30% at 100 K, respectively. 

Also, it was noted that the use of 𝑘𝑘ph−ph instead of 𝑘𝑘ph led to an overestimation of the 

phonon contribution to the total thermal conductivity of f.c.c. NiEAM1 by approximately 

3%, 4% and 7 % at 600, 200 and 100 K, respectively (see Figure 7.1(c2)), and this 

contribution for f.c.c. NiEAM2 is about 3%, 8.3%, 40.5% and 73% at 1400, 600, 200 and 

100 K, respectively (see Figure 7.1(d2)). Figure 7.1(e1) also showed that the phonon 

thermal conductivity of f.c.c. Ag increased as the temperature decreased down to 60 K. 

Furthermore, it can be seen in Figure 7.1(e2) that the phonon contribution 𝑘𝑘ph to the total 

thermal conductivity of f.c.c. Ag can be estimated as approximately 0.2% at 1200 K 

(assuming 𝑘𝑘ph ≈ 𝑘𝑘ph−ph at 𝑇𝑇 ≫ 𝑇𝑇D), and approximately 4% at 60 K. Also, it was noted 

that the use of 𝑘𝑘ph−ph instead of 𝑘𝑘ph led to an overestimation of the phonon contribution 

to the total thermal conductivity by approximately 0.04% and 0.6% at 1200 and 60 K, 

respectively (see Figure 7.1(e2)). 
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Figure 7.1: (a1), (b1), (c1), (d1) and (e1) show the decomposition of the total thermal conductivity, 

𝑘𝑘 (solid circles), of the MD models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag [11], respectively, 

into the electronic, 𝑘𝑘el (upward facing open triangles), and phonon, 𝑘𝑘ph (solid diamonds), 

components. This decomposition is based on: (i) the relation 𝑘𝑘 = 𝑘𝑘el + 𝑘𝑘ph; (ii) the calculations 

of the phonon thermal conductivity, 𝑘𝑘ph−ph (open squares), limited by the phonon scattering; 

and (iii) a simplified model of electron-phonon scattering in a metal [14, 17, 21] (see text for 

details). As a result, it is assumed that 𝑘𝑘el ≈ 𝑘𝑘el−ph and 𝑘𝑘ph = �𝑘𝑘ph−ph−1 + 𝑘𝑘ph−el−1 �−1, where 

𝑘𝑘el−ph is the electron thermal conductivity limited by the phonon scattering, while 𝑘𝑘ph−el 

(downward facing open triangles) is the phonon thermal conductivity limited by the electron 

scattering. (a2), (b2), (c2), (d2) and (e2) estimate the relative contribution of the phonon 

component to the total thermal conductivity of the MD models of f.c.c. Cu, Al, NiEAM1, NiEAM2 

and Ag, respectively. Solid diamonds and open squares show the ratios 𝑘𝑘ph 𝑘𝑘⁄  and 𝑘𝑘ph−ph 𝑘𝑘⁄ , 

respectively. 

 

It is very rarely possible to separate the electronic and lattice contributions in an 

experiment [17]. It is only in some special cases of extrinsic conductors, such as Cd3As2, 
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that the electronic and lattice contributions can be separated by measuring the magnetic-

field dependence of the thermal conductivity [22]. Nonetheless, a general fundamental 

understanding of the factors affecting the electronic and lattice contributions to the 

thermal conductivity is highly desirable for the development of advanced energy 

conversion devices that utilise the thermoelectric effect [25]. In particular, it is known 

[25] that, besides a large value of the Seebeck coefficient, combinations of a low thermal 

conductivity with large electrical conductivity are required to achieve large values of the 

figure of merit for the thermoelectric performance of a material. It is also known [17] 

that at a given temperature, the electronic thermal conductivity of different crystals is 

supposed to scale approximately linearly with the electrical conductivity of the crystals, 

according to the Wiedemann-Franz law. In other words, this means that a low value of 

the lattice thermal conductivity is highly desirable to enhance the figure of merit of a 

thermoelectric crystal. Therefore, besides the spectral representation of the lattice 

thermal conductivity, which was discussed in the previous section, and which has the 

potential to be used in the future to enable direct spectroscopic measurements of the 

lattice thermal conductivity, it is also of great interest for the intelligent development of 

thermoelectric crystals to have simple scaling relations between the lattice thermal 

conductivity and other lattice properties readily accessible in the experiment, such as 

thermal expansion and elasticity. 

In this context, it should be noted that MD simulations, in conjunction with the 

EAM potentials, present a unique opportunity for this type of study. Indeed, a 

fundamental understanding of the influence of other lattice properties on the lattice 

thermal conductivity can be achieved by a systematic MD study of a set of high quality 

models of isostructural crystals (i.e., crystals which have the same structure but different 

lattice properties). In particular, this study considered the scaling relations of the lattice 

thermal conductivity with the coefficient of thermal expansion and the bulk modulus 

estimated by using the MD models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag. It should be 

highlighted here that one of the main advantages of an EAM potential model, compared 

to a pair potential model, is the ability to reproduce the elastic anisotropy of a cubic 

lattice (which results in the three independent elastic moduli) that is one of its well-

known generic features [40]. Therefore, as long as a potential model is able to reproduce 

the fundamental features of a lattice, and all considered lattice properties are calculated 

for the same potential model, it is not even so important to study the scaling relations 
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between the lattice properties or how close the considered model can reproduce the 

actual experimental data for a particular real crystal with the lattice. Indeed, this means 

that even different EAM models of the same real cubic crystal, which predict slightly 

different lattice properties of the crystal, can in principle be used for the general study 

of the scaling relations between the lattice properties of the cubic crystals with the lattice 

considered. Nonetheless, it should be underlined again that the fitting databases of the 

employed EAM potentials contained a very extensive set of relevant experimental and 

first-principles data which guarantee an adequate accounting of the anharmonic effects 

in the lattice properties of the models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag considered 

here [5-7]. Despite the cubic crystals presenting the isotropic case for the lattice thermal 

conductivity, this study is a good starting point to gain an initial understanding of the 

scaling relations. Later, it has the potential to be extended to non-cubic crystals to 

account for the anisotropy of the lattice thermal conductivity. 

In this section, estimations are also given of the simple scaling relations between 

the lattice thermal conductivity and other lattice properties readily accessible in the 

experiments, such as the thermal expansion and elasticity. As mentioned in Chapter 1, 

such simple scaling relations would be of great interest for the intelligent development 

of thermoelectric crystals. Thus, Table 6.1 shows the lattice thermal conductivity, the 

coefficient of thermal expansion and the bulk modulus calculated for the MD models of 

f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag at the three temperatures 500, 700 and 900 K (the 

chosen temperatures are confined between the Debye and melting temperatures for all 

the metals, so that we again assume 𝑘𝑘ph ≈ 𝑘𝑘ph−ph). Table 7.1 also shows in brackets the 

available experimental data: (i) for the coefficient of the thermal expansion of Cu, Al, 

Ni and Ag [90], and (ii) for the bulk modulus of Cu [91], Al [92], Ni [93] and Ag [91]. 

The coefficient of thermal expansion 𝛼𝛼𝑃𝑃 was calculated by using the temperature 

dependence of the atomic volume at zero pressure 𝑃𝑃 = 0 (see Figure 3.1 and Equation 

3.5 for the MD models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag), and the parameters of 

Equation 3.5 are: Ω0, 𝛼𝛼Ω and 𝛽𝛽Ω (see Table 3.2) according to the relation: 

 

𝛼𝛼𝑃𝑃 =
1
𝑉𝑉
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑃𝑃

.                                                              (7.11) 
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Meanwhile, the isothermal bulk modulus 𝐵𝐵𝑇𝑇 was calculated according to the relation: 

 

𝐵𝐵𝑇𝑇 = −𝑉𝑉 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇

.                                                         (7.12) 

For each temperature considered, this was done by using a linear approximation of the 

pressure of the system at five different volumes in the direct vicinity of the respective 

zero-pressure volume. 

 

Table 7.1: Lattice properties of the f.c.c. Cu, Al, Ni and Ag models at 500, 700 and 900 K (𝑘𝑘 is 

the lattice thermal conductivity, 𝛼𝛼𝑃𝑃 is the coefficient of the thermal expansion, and 𝐵𝐵𝑇𝑇 is the 

isothermal bulk modulus). The available experimental data are shown in brackets: (i) Ref. 90 for 

the coefficients of the thermal expansion of Cu, Al, Ni and Ag, and (ii) Refs. 91, 92, 93 and 91 

for the bulk moduli of Cu, Al, Ni and Ag, respectively. 

Temperature 
(K) 

𝑘𝑘 (W/mK) 𝛼𝛼𝑃𝑃 (10-5 K-1) 𝐵𝐵𝑇𝑇  (GPa) 

Cu Ni Al Ag Cu Ni Al Ag Cu Ni Al Ag 

500 6.22 12.92 5.50 2.05 5.29 
(5.47) 

3.32 
(4.56) 

5.34 
(7.85) 

6.69 
(6.18) 

127.26 
(126.10) 

212.21 
(179.21) 

76.13 
(72.01) 

95.09 
(99) 

700 3.82 8.96 3.23 1.45 5.76 
(5.81) 

3.50 
(4.89) 

6.22 
(9.17) 

7.09 
(6.78) 

121.03 
(118.06) 

207.16 
(173.61) 

70.57 
(67.69) 

88.459 
(94) 

900 2.59 7.16 2.19 1.18 6.21 
(6.32) 

3.68 
(5.08) 

7.07 
(10.46) 

7.47 
(7.44) 

114.70 
(-) 

199.79 
(-) 

63.61 
(62.88) 

80.59 
(-) 

 

 

Figures 7.2(a) and 7.2(b) show, in double-logarithmic coordinates, the ratio of the 

lattice thermal conductivities 𝑘𝑘ph(M) 𝑘𝑘ph(Cu)⁄  as a function of the ratio of the 

coefficients of thermal expansion 𝛼𝛼𝑃𝑃(M) 𝛼𝛼𝑃𝑃(Cu)⁄  and the ratio of the isothermal bulk 

moduli 𝐵𝐵𝑇𝑇(M) 𝐵𝐵𝑇𝑇(Cu)⁄ , respectively, calculated for the MD models of f.c.c. Cu, Al, 

NiEAM1, NiEAM2 and Ag at the three temperatures 500, 700 and 900 K (M denotes Cu, 

Al, NiEAM1, NiEAM2 or Ag). By analysing the slopes of the linear fits of the data in Figure 

7.2, it can be roughly estimated that at a given temperature the lattice thermal 

conductivity approximately scales as 𝑘𝑘ph ∝ 𝛼𝛼𝑃𝑃−2 and 𝑘𝑘ph ∝ 𝐵𝐵𝑇𝑇. In addition, it can be 
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seen in Figure 7.2 that in both cases the absolute value of the scaling power changes 

with temperature only very slightly. This study presents the data for five models so that 

the scaling relations across a sufficiently large number of MD models of different f.c.c. 

metals can be investigated. As a result, it can be noted that the lattice component of the 

thermal conductivity should be smaller in isostructural materials with a higher value of 

the coefficient of thermal expansion and a lower value of the bulk modulus. 

Furthermore, one may expect that in materials which exhibit anisotropic lattice 

properties, the lattice component of the thermal conductivity should be smaller in that 

direction which has a higher value of the coefficient of thermal expansion and a lower 

value of the elastic modulus. 
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Figure 7.2: Double-logarithmic plot for the scaling relations of the lattice thermal conductivity 

𝑘𝑘𝑝𝑝ℎ with (a) the coefficient of the thermal expansion 𝛼𝛼𝑃𝑃 and (b) the isothermal bulk modulus 𝐵𝐵𝑇𝑇. 

Plots show the ratio of the lattice thermal conductivities 𝑘𝑘𝑝𝑝ℎ(M) 𝑘𝑘𝑝𝑝ℎ(Cu)⁄  as a function of (a) 

the ratio of the coefficients of the thermal expansion 𝛼𝛼𝑃𝑃(M) 𝛼𝛼𝑃𝑃(Cu)⁄  and (b) the ratio of the 

isothermal bulk moduli 𝐵𝐵𝑇𝑇(M) 𝐵𝐵𝑇𝑇(Cu)⁄  calculated for the f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag 

models at 500, 700 and 900 K (M denotes Cu, Al, NiEAM1, NiEAM2 and Ag). The symbols show 

the calculated data (data for Cu, Al, NiEAM1, NiEAM2 and Ag are marked as 1, 2, 3, 4 and 5, 

respectively) while the lines show the linear fit of the data. The small symbols and solid lines 

represent data at 500 K, the medium symbols and dashed lines represent data at 700 K, and the 

large symbols and dotted lines represent data at 900 K. 
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Chapter 8: Conclusions and Recommendations for 

Future Research 
 

8.1 Conclusions 
 

In this work, equilibrium molecular dynamics simulations, in conjunction with the 

Green-Kubo formalism, provided an effective basis to explore the thermal resistance of 

a crystal lattice with a monatomic unit cell due to phonon-phonon scattering processes. 

The key role of the equilibrium molecular dynamics simulations is the ability to give 

unique and direct access to the HCACF, which has been shown for a monatomic lattice, 

to reveal a consistent two-stage decay. Furthermore, this study has shown that the two-

stage decay can be universally modelled by an analytical expression which provides an 

exceptional basis for the development of a general analytical treatment of the lattice 

thermal conductivity. The main results of the present study that originated from the 

treatment are briefly summarized below: 

 

(i) It was found that the HCACFs of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag, as 

five case studies, exhibited a two-stage temporal decay which can be 

nicely modelled by the analytical function given by Equation 5.1 (page 

81). Namely, an initial rapid decay of the HCACF was followed by a peak 

in the low temperature range and the intensity of the peak decreased as the 

temperature increased. It transformed to a shoulder which diminished 

almost entirely at high temperatures. Thus, only at very high temperatures, 

the first stage decay of the HCACF was visually and directly followed by 

a longer second stage decay in accordance with the results reported in [1, 

2] for the HCACF of the f.c.c. Ar model. It has been demonstrated that the 

lattice thermal conductivity of a monatomic lattice can be decomposed 

into two contributions due to the acoustic short- and long-range phonon 

modes. Moreover, it has transpired that it is possible to present these two 

contributions in the form of simple kinetic formulas, consisting of the 

products of the heat capacity, the square of the average phonon velocity 

and the average relaxation time of the acoustic short- and long-range 



Chapter 8: Conclusions and Recommendations for Future Research 
 

171 
 

phonon modes, respectively. In addition, all these quantities have been 

numerically evaluated in a self-consistent manner from the HCACF. 

(ii) A HCACF decomposition model was introduced (see Equation 5.1 (page 

81)), that can capture all the contributions to the HCACF of a monatomic 

f.c.c. lattice that were discussed in the literature. In the framework of this 

model, it has been demonstrated that despite the freezing out of the high 

frequency phonon modes at temperatures below the Debye temperature, a 

classical description of the thermal transport properties can be used down 

to around one quarter of the Debye temperature. This is because the 

acoustic long-range phonons, which are the main heat carriers responsible 

for the phonon thermal transport at low temperatures, are active down to 

around one quarter of the Debye temperature, and only at lower 

temperatures do they start to freeze out.  

(iii) An analytical treatment of the decomposition of the lattice thermal 

conductivity allowed for a numerical evaluation of the relaxation times 

and the partial heat capacity of the acoustic short- and long-range phonon 

modes from the HCACF extracted from the MD simulations at high 

temperatures 𝑇𝑇 > 𝑇𝑇𝐷𝐷. 

(iv) It has been demonstrated that the average phonon velocities of the acoustic 

short- and long-range phonon modes should be equal to each other and 

can be evaluated via the second-order fluctuations of the heat current 

vector.  

(v) An extensive analysis of the spectral representation of the calculated 

HCACF has been carried out. In particular, the power spectra associated 

with the heat flux fluctuations in thermal equilibrium were predicted and 

investigated in detail. The power spectra have the potential to be measured 

in the future by various spectroscopic techniques. Thus, this has allowed 

for a potential connection between the study’s model predictions and 

experiments  

(vi) Within the framework of a simplified model of the electron-phonon 

interactions in a metal [14, 17, 21], a comparison of the results was 

performed for the component of the lattice thermal conductivity, 𝑘𝑘ph−ph, 

of the MD models of f.c.c. Cu, Al, NiEAM1, NiEAM2 and Ag determined by 
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the phonon-phonon scattering processes with the experimental 

measurements of the thermal conductivity [11]. It has been demonstrated 

that: (i) the electronic contribution 𝑘𝑘el (≈ 𝑘𝑘el−ph) to the total thermal 

conductivity dominated the considered temperature range; (ii) the phonon 

thermal conductivity, 𝑘𝑘ph, increased as the temperature decreased; (iii) the 

use of 𝑘𝑘ph−ph instead of 𝑘𝑘ph led to an overestimation of the phonon 

contribution to the total thermal conductivity. 

(vii) The scaling relations of the lattice thermal conductivity with the 

coefficient of thermal expansion and the bulk modulus have been 

estimated. As a result, at a given temperature the lattice thermal 

conductivity scales approximately with the inverse second power of the 

coefficient of the thermal expansion and are roughly proportional to the 

bulk modulus. 

 

 8.2 Future Research 
 

The following suggestion can be defined for future research: 

(i) In this research, the simulations were performed within the framework of 

equilibrium MD simulations in conjunction with the Green-Kubo 

formalism. For this purpose, only five first-principles-based many body 

potential within the framework of the EAM developed by Mishin et al. 

were used. Generally, this analysis could be extended by employing other 

existing and new interatomic potentials, so that more MD models can be 

investigated. 

(ii) As discussed here, equilibrium MD simulations, along with the 

Green-Kubo formalism, are an effective method to estimate thermal 

conductivity and to also calculate the phonon transport properties of 

materials. Also, ab initio MD simulations have become popular in recent 

years. Consequently, combining the Green-Kubo method with ab initio 

MD simulations might be an interesting and fruitful topic for future work. 

(iii) This thesis focused on monoatomic f.c.c. crystals. Moreover, some alloys 

exhibit excellent high-temperature physical and mechanical properties. 
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The techniques developed here can be used in future work for the 

investigation of the thermal transport properties of alloys. 

(iv) The investigation of scaling relations between the lattice thermal 

conductivity and other lattice properties can be extended by including the 

data for models of other metals with different crystal lattices. 

(viii) As shown, the thermal conductivity can be expressed as the sum of two 

main contributions, one due to the electronic states and the other due to 

the lattice vibrations. It is normally quite difficult to separate these two 

contributions directly in an experimental situation. Simulation and 

experimental work are also important as the simulations provide insight 

into the nature of the physical phenomena and the experiment makes no 

assumptions. Furthermore, in this research, the power spectra have been 

developed. Accordingly, future work can focus on the power spectra that 

are expected to be accessible for measurements by various spectroscopic 

techniques. Thus, it can be a potential connection between the theoretical 

description and experiment. 
(ix) Phononics, like electronics and photonics, is a young branch of physics 

that is concerned with the behaviour of sound and heat. Understanding 

how to control sound waves and heat vibrations in materials provides 

opportunities to develop new ideas and devices for transforming waste 

heat into electricity. 
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