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Time constant (1, refer to acoustic short-range phonons)

Time constant (2, refer to acoustic long-range phonons)

Average relaxation time

Relaxation time for a given acoustic long range phonon mode to
restore the same perturbed phonon distribution n(q, b, T) to the
displaced distribution ny(q, b, u, T) via N-processes

Relaxation time for a given acoustic short-range phonon mode to
restore a perturbed phonon distribution n(q,b,T) to the
equilibrium distribution ny(q, b, T) via U-processes

Relaxation time for a given acoustic long-range phonon mode to
restore the displaced distribution ng(q, b, u, T) to the equilibrium
distribution ny(q, b, T) via U-processes

Characteristic time constant

Combined relaxation time

Effective relaxation time for a given phonon mode
Mode-dependent relaxation time for N-processes

Barostate time constant

Reservoir-system time constant

Mode-dependent relaxation time for U-processes

Phonon relaxation time

Velocity vector of the i-th atom

Angular frequency
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W, and ws

w(q,b)

Low-frequency phonon mode

High-frequency phonon mode

Angular frequency which is a function of the phonon wave vector

q and the phonon polarization b

Characteristic angular frequency

Debye frequency

Maximum location of S; (w), Damped resonance frequency
Maximum location of S;, (w)

Maximum location of power spectrum

Undamped resonance frequency

Minimum of |Z; (w)|, where Y; (w) passes via zero value

Minimum location of impedance | Z, (w)|of the acoustic long rang

phonon modes
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Abbreviations

Abbreviation Description

Ag Silver

Al Aluminium

Ar Argon

b.c.c. Body-centred cubic

Cu Copper

EAM Embedded-atom method

f.c.c. Face-centred cubic

Ge Germanium

HCACF Heat current autocorrelation function
LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator
MD Molecular dynamics

N-processes
Ni

Nieam1

Nieam?2

NPT
NVE
NVT
ps
sC
Si
SiGe
THz

U-processes

Normal processes

Nickel

f.c.c. Ni that describe by EAM interatomic potential developed
by Mishin et al, (published in 1999)

f.c.c. Ni that describe by EAM interatomic potential developed
by Mishin et al, (published in 2004)

Isobaric-isothermal ensemble

Micro canonical ensemble

Canonical ensemble

picosecond

Simple cubic

Silicon

Silicon germanium

Terahertz

Umklapp processes
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Abstract

Abstract

In this study, the phonon dynamics and lattice thermal conductivity of f.c.c. Copper (Cu),
Aluminium (Al), Nickel (Ni) and Silver (Ag), as case studies, are investigated over a
wide range of temperatures in detail. Calculations are performed within the framework
of equilibrium molecular dynamics simulations in conjunction with the Green-Kubo
formalism. To describe the interatomic interaction, the most reliable embedded-atom
method potentials are used. It should be noted that for Ni two different embedded-atom
method interatomic potentials are considered. Hereafter, the first potential is referred to
as Nieam1 (published in 1999) while the second potential is referred to as Nieaw2
(published in 2004). In all the models considered, a two-stage decay in the heat current
autocorrelation function was observed. After the first stage of decay, the heat current
autocorrelation function showed a peak in the low temperature range. The intensity of
the peak decreased as the temperature increased. Furthermore, it transformed to a
shoulder which diminished at high temperatures. It was revealed that the lattice thermal
conductivity of a monatomic lattice can be decomposed into two contributions due to
the acoustic short- and long-range phonon modes. These two contributions can be
presented in the form of simple kinetic formulas consisting of the products of the heat
capacity, the square of the average phonon velocity and the average relaxation time of
the acoustic short- and long-range phonon modes, respectively. In addition, this analysis
allowed for numerical evaluations of all these quantities, in a self-consistent manner,
from the heat current autocorrelation function. In particular, it was shown that the
average phonon velocities of the acoustic short- and long-range phonon modes must be
equal to each other and can be expressed via second-order fluctuations of the heat current

vector.

This was followed by an extensive consideration of the spectral representation of the
analytical model for the heat current autocorrelation function. This has the potential to
be used to efficiently decode the generic information on the lattice thermal conductivity
and phonon dynamics from spectroscopic measurements, with no gradients imposed on
the studied crystal, if a proper resolution of the frequency range of approximately 1 — 20
THz is accessible. In this research, the contribution to the lattice thermal conductivity
determined by the phonon-electron scattering processes was intentionally ignored, and
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only the contribution due to the phonon-phonon scattering processes was considered.
However, during comparisons of the data with the experiments, an estimation of the first
contribution was made. Moreover, it is also of great interest, for practical applications,
to have simple scaling relations between the lattice thermal conductivity and the other
lattice properties readily accessible in experiments, such as the thermal expansion and
elasticity. In this context, the scaling relations of the lattice thermal conductivity with

the coefficient of the thermal expansion and the bulk modulus were estimated.

25



Chapter 1: Introduction

Chapter 1: Introduction

1.1 Motivation and Problem Statement

Over the past two decades, thermal conductivity predictions have only been made for a
very limited range of materials. For example, McGaughey and Kaviany used molecular
dynamics (MD) simulations combined with the Lennard-Jones pair potential to define
the phonon transport and to predict the thermal conductivity of f.c.c. Ar [1, 2]. Also,
Kaburaki et al. calculated the thermal conductivity of f.c.c. Ar over a wide temperature
range, showing that the MD method combined with the Lennard-Jones pair potential has
a good accuracy for the prediction of the thermal conductivity of argon [3]. Both the
mentioned groups used equilibrium MD along with the Green-Kubo method. He et al.
[4] compared the performance of equilibrium and non-equilibrium molecular dynamics
(EMD and NEMD) and the Boltzmann transport equation for bulk crystalline Sig5Geos
alloys at room temperature. They found that MD simulations can provide a valuable
insight into the thermal properties of materials [4].

The appropriate candidates for this research are Cu, Ni, Al and Ag as:

(i) Very high-quality embedded-atom method (EAM) potentials [5-8] are
available for these elements.

(i)  The calculated phonon thermal conductivity can be compared to the
previous non-equilibrium MD calculations [9] of the phonon thermal
conductivity of f.c.c. Cu, as a case study, under a large temperature
gradient with an older EAM potential [10].

(ili)  The results obtained for f.c.c. Cu, Ni, Al and Ag can be compared with
each other to estimate the scaling relations between the lattice thermal
conductivity and the other lattice properties.

(iv)  The results can be compared with the experimental data on the thermal
conductivity of the above mentioned metals [11].

Thus, the motivation for the present research was to investigate the temperature

dependency of the phonon thermal conductivity and the phonon dynamics of the
elemental f.c.c. crystals, using Cu, Ni, Al and Ag models as case studies. The Green-

Kubo formalism was applied to examine, in greater detail, the heat current
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autocorrelation function (HCACF) and to gain an important insight into the phonon

scattering processes. The results from this research are then compared with previous

related theoretical and experimental studies, with the goal of bridging the experiment
and the theory [12].

1.2 Research Objectives and Research Significance

In this work, the thermal transport properties of crystal Cu, Ni, Al and Ag are considered.

The main objectives of this study were:

(i)

(ii)

(iii)

(iv)

v)

To use molecular dynamics simulations in conjunction with the Green-
Kubo formalism to investigate the heat current auto-correlation
functions of those metals in detail.

To investigate the temperature dependence of phonon thermal
conductivity and the phonon dynamics of Cu, Ni, Al and Ag in detail.
To investigate, in detail, the power spectra of equilibrium fluctuations,
which are characterized by the HCACF.

To compare the results obtained for the f.c.c. Cu, Ni, Al and Ag with
each other, and to estimate scaling relations between the lattice thermal
conductivity and the other lattice properties, such as the coefficient of
thermal expansion and the bulk modulus.

To use the obtained results for Cu, Ni, Al and Ag to compare them with
previous simulation studies and the available experimental data on

thermal conductivity.

The outcome of this research will enhance our understanding on how the phonon

thermal conductivity of metals can be predicted by using MD simulations, within the

framework of the EAM, in conjunction with the Green-Kubo formalism. Another

advantage of MD simulations is that testing thermal properties is faster and less

expensive than by synthesising and characterizing in real experiments. Moreover, MD

simulations provide some details of atomic-level information that would not be

accessible in experiments. The results will also be compared with previous related

theoretical and experimental data on thermal conductivity.
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1.3 Thesis Structure

In this thesis, the temperature dependence of the lattice thermal conductivity and phonon
dynamics of the f.c.c. Cu, Ni, Al and Ag models are investigated with the most reliable
EAM potentials [5-8] by treating the HCACF extracted from the equilibrium MD
simulations within the framework of the analytical model. For this purpose, the thesis
begins with an introductory chapter which provides an outline of the topics covered by
the thesis.

The first section of Chapter 2 focuses on the fundamental concepts of heat transfer
in materials, including the thermal conductivity and structures of materials. As the two
main contributors to thermal conductivity, lattice vibrations and free electrons are
discussed in detail. The next section of this chapter discusses the MD simulations and
details related to the simulations. The Green-Kubo method and the direct method for
predicting thermal conductivity and the Lennard-Jones potential are then discussed. A

general review of the related literature on the topic of this research study is presented.

In Chapter 3, the Green-Kubo formalism, which is based on a system at equilibrium,
is discussed in detail. The MD method and the general details of the simulations will be
described. The various parameters, such as the elastic properties, the Debye wavelength,
the average speed of sound, the Debye frequency and the Debye temperature of f.c.c.

Cu, Al, Ni and Ag, will also be presented in this chapter.

Chapter 4 begins with a description of the analytical model used for the HCACF.
The temperature dependence of the lattice thermal conductivity and the phonon
dynamics of the MD models of f.c.c. Cu, Ni, Al and Ag are investigated in detail, and
show that the HCACF has a two-stage decay for a monoatomic lattice. Moreover, it was
demonstrated that the HCACF calculated for wide temperature ranges for the NPT, NVT
and NVE ensembles, as well as the averages over the three ensembles, can be universally
modelled by this analytical function.

Chapter 5 focuses on the decomposition model for lattice thermal conductivity. In
particular, it is shown that the lattice thermal conductivity for a monoatomic crystal can
be decomposed into two contributions due to the acoustic short- and long-range phonon
modes. Furthermore, the contributions from the acoustic short- and long-range phonon
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modes to the total phonon thermal conductivity will be presented in the form of simple
kinetic formulas, consisting of the product heat capacity, the average phonon velocity

and the average relaxation time.

Chapter 6 presents the spectral representations of the analytical models for the
HCACF. This can be used in the future to extract information on the lattice thermal
conductivity and the phonon dynamics from the scattering and absorption spectroscopic
measurements, with no gradients imposed on the crystal studied, if a proper resolution
in the frequency range of approximately 1 — 20 THz is accessible.

Chapter 7 compares the results obtained for the MD models of f.c.c. Cu, Ni, Al and
Ag with each other. In addition, the objective was to compare the results obtained to
those for the Lennard-Jones pair potential model of f.c.c. Ar. Estimations were made of
scaling relations between the lattice thermal conductivity and other lattice properties
readily accessible in experiments, such as the coefficient of the thermal expansion and
the bulk modulus [1-3].

In the final chapter of this thesis, the important outcomes of the study are presented

and a number of interesting possibilities for future work are recommended.
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2.1 The Fundamental Concepts of Heat Transfer in Materials

Thermal conductivity is one of the fundamental physical properties of materials, and it
is very important for heat exchange calculations and the evaluation of thermal insulation
performance. In general, thermal conductivity has considerable impact on a wide range
of technical applications containing the thermal management® of mechanical, electrical
and chemical sensors and transducers. Furthermore, the investigation of the fundamental
physics of the heat conduction process can provide a detailed understanding of the nature
of the structure dynamics in materials. The last two decades have seen dramatic
improvements in experimental techniques and theoretical studies of thermal

conductivity [13].

2.1.1 The Kinetic Theory of Thermal Conductivity

Heat is transferred by three basic mechanisms: conduction, convection, and radiation.
Conduction is the transmission of heat from one molecule to another through a substance
and thermal conductivity is the ability of a material to transfer heat through the

conduction process. Fourier’s Law is shown in Equation 2.1:

dT
Q=-k—, (2.1)

where, Q is the heat flux [W/m?], % is the temperature gradient [K/m], k is the thermal

conductivity [W/mk], and the negative sign shows that the heat flows from the hot side
area to the colder side. The rate of heat transfer is usually quantified in terms of the
thermal conductivity coefficient k. The thermal conductivity of materials can be

influenced by a number of factors, such as the molecular bonding, structure and density

! Thermal management provides cooling solutions to protect electronic devices from damage by heat
generation.
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of materials [14]. Figure 2.1 illustrates the heat transfer process in materials through the

conduction process.

Figure 2.1: The conduction heat transfer process from high temperature (T1) to low temperature
(T2) surfaces. A is the area perpendicular to the heat flow, Q is the rate of the conduction heat

transfer and Ax is the distance of the heat transfer.

The lattice vibrations (phonons)? and the free electrons are the two main

contributors to the transportation of heat in materials, as shown in Equation 2.2:

k =ke + kpp, (2.2)
where, k,, and k. are the phonon and electronic contributions to the thermal
conductivity, respectively [15]. While phonon thermal conductivity is defined by the
vibrations of atoms around their equilibrium positions (crystal lattice) in solids, the
electron contribution to the thermal conductivity is defined by the free electrons transfer
of the thermal energy when the free electrons migrate from a high temperature area to a

lower temperature area (see Figure 2.2) [15].

Hot area

Figure 2.2: Schematic illustration of electronic contribution to the thermal conductivity in metal

crystal structures.

2 Phonons are collective vibrations of the crystal lattice.
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In particular, phonon thermal conductivity is defined by the kinetic theory

expression:

1
kph = §CVSphA’ (23)

where, Cy is the phonon specific heat per unit volume, s, is the phonon velocity and
A3 is the mean free path of the phonons, which is defined as the average distance between
two collisions, so A = s,,7, where 7 is the relaxation time* or the collision time (a

similar expression is used for electron thermal conductivity) [14].

2.1.2 The Wiedemann-Franz Law

Usually, the Wiedemann-Franz law can be used to estimate the electron thermal
conductivity k,;, which predicts k,; to scale linearly with the product of the electrical
conductivity and the temperature o,;T. The electron thermal conductivity can be

presented as:

kel = Loo'elT (24‘)

where, g, is the electric conductivity, L, is the Lorenz constant (2.45x108 WQ/K?) and
T is the absolute temperature [16]. As a result, the phonon contribution to the total

thermal conductivity can be explained as:

3 The average distance travelled between collisions.
4 The time required for a system to return to equilibrium after perturbation.
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kpn = k — LooT (2.5)

The derivation of the law assumes that the relaxation times appropriate to thermal and
electrical conduction are identical. However, the form of the departure of the electron
distribution from equilibrium due to an electric field can be different from the departure
produced by a temperature gradient [17]. As a result, the details of the assessment of k.,
(and subsequently k), according to the Wiedemann-Franz law, can be incorrect [14,
17-21]. Aside from the use of the Wiedemann-Franz law, the electronic and lattice
contributions may be separated by measuring the magnetic-field dependence of the
thermal conductivity [14, 22-24]. The method is based on the assumption that the
electronic contribution to the thermal conductivity, as the electrical conductivity, can be
sufficiently reduced by the application of a large magnetic field, so that one can isolate
or extrapolate the lattice thermal conductivity, presuming it is field independent [14].
This technique requires very high electron mobility, so it was applied for semiconductors
and semimetals [22, 24], while in ordinary metals this approach would not work [14].
Furthermore, it was shown in [23] that the utilization of thermal fluctuations or
Johnson/Nyquist noise has the potential to be used as a spectroscopic technique to
measure multiple transport properties, including the k.;, of conductors and
semiconductors through the fluctuation spectra of the intrinsic conduction electrons
without the application of [14] electrical potentials or thermal gradients.

In general, a fundamental understanding of the factors affecting the electronic and
lattice contributions to thermal conductivity is highly desirable for the development of
advanced energy conversion devices that utilise the thermoelectric effect [25]. Indeed,
the thermoelectric performance of a material is expressed by its dimensionless figure of

merit®:

SZO'elT . SZO'elT
k ke +kpn

Figure of merit = (2.6)

5 A quantity used to define the performance of a device or method.
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where S is the Seebeck coefficient.® It is straightforward to see from Equation 2.6 that
the combination of low thermal conductivities with large values of S and a,; are required
in order to achieve large values of the figure of merit. Since k,; is supposed to scale
approximately linearly with a,,T, according to the Wiedemann-Franz law [14, 17, 19-
21, 25], researchers have generally focused on ways to decrease the lattice thermal
conductivity kj, in order to enhance the figure of merit of a thermoelectric material [25-
27]. Inthis context, considerable effort for reducing the k,, has been made by managing
the structure of the materials in order to increase the phonon blocking and phonon
scattering by structural imperfections. This concept of engineering k,, employs
different strategies, such as building up superlattices [28, 29] and nanostructures [30,
31], incorporating suitable filler atoms into structural cages [32, 33], introducing point

defects and their complexes by alloying with isoelectronic elements [34-39], and so on.

Another conceptual approach for lowering the k,, can be based on an
understanding of the interrelations between the lattice thermal conductivity and the other
lattice properties readily accessible in experiments, such as thermal expansion and
elasticity. With this understanding, guidelines for managing the structure in combination
with the basic lattice properties can be formulated in designing new thermoelectric
materials which have an exceptionally low phonon mediated contribution to the thermal
conductivity. A methodological procedure which, in contrast to experimental methods,
straightforwardly allows for a systematic study of the interrelations of the lattice thermal
conductivity with the other properties of a perfect lattice can be based on the MD
method. However, the complexity of typical thermoelectric materials makes both the
accurate MD description of the materials and the evaluation of the interrelations between
their lattice properties fairly difficult and not transparent. Meanwhile, a fundamental
understanding of the scaling relations of the lattice thermal conductivity with other
lattice properties can be achieved using a systematic MD study of a set of high-quality
models of isostructural crystals (i.e., crystals which have the same structure but different

lattice properties) which have a relatively simple cubic lattice.

¢ A measure of the magnitude of an induced thermoelectric voltage in response to a temperature difference
across the materials.
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2.1.3 The Debye Model

The Debye model is a method for estimating the phonon contribution to the heat capacity

in a solid, introduced by Peter Debye in 1912. The thermal energy is determined as U =

Vw?
2m2s3

[ D(w){(n(w))hw dw, where D(w) is the density of state’ ( D(w) = ), (Where s is

the speed of sound, w is the frequency and V' is the volume) and the thermal equilibrium

1

occupancy of the phonons is described by the Planck distribution as (n) = g

As a result, the thermal energy is given by:

Uzij Vo ( heo )dszngT4 fxD © i 2.7)
o \2m?s3 ) \ehw/T —1 2m2s3h3 ), ex—1""" '

where, x = hw/T = hw/kgT and xp = hwp/kgT = Tp/T that Debye Temperature®

1/3

== (6n;N) , 0 that the total phonon energy is defined by:

B

(Tp) is defined as T

T XD x3
U=9kT(—>f dx, 2.8
nkp o/ ), ex—lx (2.8)

where, x, = Tp /T and n is the number of atoms in the specimen [20].

Heat capacity is the measure of the amount of energy the system needs to
increase the temperature by one degree. There are two types of heat capacity: the heat

capacity at constant volume C,, C, = (g—ﬁ)v (where E is the energy and T is the

7 Which describes the number of states per interval of energy at each energy level.
& Which estimates the phonon contribution to the specific heat in a solid.
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temperature) and the heat capacity at constant pressure Cp °. The contribution of the
phonons to the heat capacity of a crystal is called the lattice heat capacity [20]. The heat
capacity of solids, according to the Debye approximation, can also be calculated using
the following equation. In this equation, wy, is the Debye frequency. It is close to the

maximum frequency derived from the interatomic force constant [19]:

Coo(T) = gk_B(’ﬂfn J/—d keT _ T 29)
vip m \hwp 0 (ex—1)2"""  hwp Tp '
kB T 3 ha)D/kBT x4ex
C,,(T) = —(—) f ——dx, 2.10
o (T) m \T, n . ™ —1)? x (2.10)

where, n is the number of atoms in the specimen, T, is the Debye Temperature, kg is the
Boltzmann constant, m is the mass of atom and # is the reduced Planck constant (A =
h/2m).

2.1.4 The Gruneisen Parameter

The effect of changing the volume and temperature on the vibrational properties and size
of the lattice is described by the Griineisen parameter. The thermodynamic Griineisen

parameter is defined by:

—V(dp) _ & 2.11
r=V{E) = o (2.11)

2
9 A thermodynamic relation gives Cp — Cy = Vo T QBL’ where V is the atomic volume, a; is the
T

coefficient of thermal expansion, T is the temperature, and By is the isothermal compressibility.
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where, V is the volume, E is the energy, ap10 is the coefficient of thermal expansion,

Cy11is the heat capacity at a constant volume, and 12 is the isothermal compressibility.

2.1.5 Structure and Elastic Properties

This research considers the crystal (solid) phase of Copper (Cu), Nickel (Ni), Silver (Aqg)
and Aluminium (Al).

The crystal structures of atoms and molecules in solids are unique formations that
can be described in terms of a lattice. The simple cubic (sc) lattice, the body-centred
cubic®® (b.c.c.) lattice and the face-centred cubic®* (f.c.c.) lattice are three lattices in the
cubic system. Table 2.1 gives the essential information on these crystal structures [20].
In the f.c.c. crystal, the atomic displacement is isotropic and all of the atoms are at

equivalent positions [19].

Table 2.1: Basic information about lattice structures

Simple Body-centred Face-centred

Unit cell volume* al a a
Number of atoms in one unit

1 2 4
cell

N 3 3

Primitive cell volume a® a/, /4
Number of nearest neighbors 6 8 12
Nearest-neighbor distance a 31/ Bl sz

“In terms of the lattice parameter a

In crystal the state, Cu, Ni, Ag and Al have f.c.c. lattices. Figure 2.3 shows the

f.c.c. lattice structures.

10 Characterizes how the size or volume of an objective changes with a change in temperature.

11 The amount of heat required to enhance the temperature of a system by one degree.

12 Describes how the volume of a system changes as a function of the pressure at a constant temperature.
13 Body-centred cubic is a cube where atoms are arranged at the corners of the cube with an atom situated
in the middle of the unit cell.

14 Face-centred cubic is a cube where atoms are arranged at the corners and centre of each face of the unit
cell.
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Figure 2.3: (a) Face-centred cubic lattice structure (f.c.c.); (b) In the f.c.c. crystal, the centre

atom has 12 nearest neighbours and it is an isotropic structure [2].

Phonons are the collective vibrations of the crystal lattice which make a significant
contribution to many of the physical properties of materials, including the heat capacity
and thermal conductivity [19]. In solids, atoms join up with each other through bonds
that can be modelled as springs (see Figure 2.4). The temperature difference causes the
vibrations of the hot region to be transmitted through the springs to the cooler region.
As a result, all the atoms start to vibrate and transfer the thermal energy. There are two
types of phonons: acoustic and optical phonons [19]. Monoatomic solids can
demonstrate only one type of phonon, namely, acoustic phonons. In contrast to
monoatomic solids, the smallest unit cell of binary alloys exhibits two types of phonons:
acoustic and optical phonons. In the optical mode, two neighbouring atoms move
opposite to each other but in the acoustic mode they move together, as shown in Figure

2.5:
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Network of atoms Vibrate hot side Whole structure vibrating

Figure 2.4: Schematic diagram of conduction by lattice vibration
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(@) (b)

Figure 2.5: Schematic diagram of optical and acoustic phonons. (a) Dispersion curves in the
linear diatomic chain, where k is the wave-vector (related to wavelength k=2m/A) and o is the
frequency; (b) Optical and acoustic vibrations in the linear diatomic chain. m; and m; are the

atomic masses that are repeated periodically at a distance a.

The elastic properties of a solid are defined by interatomic forces when the atoms

are moved from their equilibrium position. The general form of Hooke’s law is:

O—l'j = Zklcl’jklgkl, (212)

where, Cjjy, is the tensor of elastic constants, which has 3x3x3x3 = 81 components, with
only 36 being independent elastic constants. In cubic crystals C;; = C,; = C33, €15 =
Cyq1 = Cy3 = (35, = Cy3 = C3q1, C4y = Css = Cy¢ and the other components are zero,
with C;; = Jxx/gxx, Cip = Jxx/gyy and C,, = axy/gxy describing the longitudinal
compression, transverse expansion and shear modulus, respectively. In these equations,
0xx aNd oy, present the compression and shear stress, respectively. Also, &, and &y,
show the compression strain and &,,, shows the shear strain. The elastic properties have

an important effect on the thermal conductivity of materials [40].

2.1.6 The Normal and Umklapp Processes

In an anharmonic crystal, the lattice vibrations (lattice waves or phonons) are not

independent, but interact with each other. In particular, the dynamical effects due to this

39



Chapter 2: Background and Literature Review

interaction, such as the three phonon-phonon scattering processes, give rise to the
phenomenon of intrinsic lattice (phonon) thermal conductivity [17, 41, 42]. The
theoretical description of the lattice thermal conductivity is rather more complicated than
an analytical treatment of the anharmonic effects in relation to other lattice properties,
such as thermal expansion, elasticity and heat capacity. The problem arises from the fact
that the thermal conductivity, in contrast to other lattice properties, cannot be readily
expressed using the lattice sums. Instead, one first has to solve the Boltzmann equation
for the phonon distribution function, originally formulated by Peierls [41, 42].
Furthermore, a mechanism for establishing a local thermal equilibrium distribution of
the phonons needs to also be elucidated. This research, however, is not concerned with
the interactions of phonons with the crystal boundaries, lattice imperfections and
electrons. These contributions to the lattice thermal conductivity can be neglected in
comparison with the phonon-phonon interactions for sufficiently large and perfect
crystals at sufficiently high temperatures.

Peierls was the first to point out [41, 42] that the three-phonon scattering process

is of the form:

q.1 t+q; = qs3, (2.13)

Consisting of the interaction of two phonons with wave vectors q, and q, to produce a
third phonon with a wave vector g5 within the first Brillouin zone® cannot establish
equilibrium. This is because the scattering process given in Equation 2.13 conserves the
phonon momentum (which is ~q for a phonon with a wave vector q). Such non-resistive
scattering processes are called normal processes or N-processes. To enable a way for
restoring the non-equilibrium phonon distribution to the equilibrium, Peierls suggested
[41, 42] a three-phonon scattering process which does not conserve the total phonon

momentum:

q9.tq,=q3+g, (2.14)

where, g is a reciprocal lattice vector. Equation 2.14 reflects the fact that if a wave vector

of the produced phonon is outside the first Brillouin zone then it can be transformed into

15 The Brillouin Zone is determined as a primitive cell in the reciprocal lattice.
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a physically equivalent wave vector inside the first Brillouin zone by the addition of a
reciprocal lattice vector g. Such resistive scattering processes are called Umklapp
processes or U-processes. It follows on from Equation 2.14 that the wave vectors of

phonons suitable for the Umklapp processes must satisfy the following condition:

1
|q1 +q2| >§|gmin|- (2'15)

In other words, at least one of the two initial phonons suitable for a U-process must have
a wave vector which exceeds ilgminl in magnitude, where g.,;, IS the shortest

reciprocal lattice vector [42]. Both the N-processes and the U-processes conserve the
phonon energy (which is 2w for a phonon with angular frequency w), since it can be

expressed by:
0)1 + W, = W3, (2.16)

where, w,, w, and w4 are the angular frequencies of the phonons participating in the
scattering processes. It should also be noted that in the crystal, the phonon scattering
processes clearly exist; the reverse of the processes is given by Equations 2.13, 2.14 and
2.16. In addition, despite the N-processes themselves not tending to restore the phonon
equilibrium distribution and not contributing to the thermal resistance, the N-processes
may still have a profound influence on the lattice thermal conductivity. These processes
have the significant effect of transferring energy between the different phonon modes,

thus preventing large deviations from the equilibrium distribution.

N-Process qq U-Process

(@) (b)
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Figure 2.6: In Figures (a) and (b), the squares demonstrate the first Brillouin zone. (a) The
N-processes show two incoming phonons with wave-vectors g, and q, (blue) generating one
outgoing phonon with a wave vector g5 (red). (b) The U-Processes illustrate that the sum of the
two wave-vectors g, and g, might point to outside the Brillouin zone (q3). As shown in Figure
2.6(b), the g outside the first Brillouin zone are physically equivalent to the vectors inside it and
can be mathematically transformed into each other by the addition of a reciprocal lattice

vector g.

2.1.7 The Boltzmann Equation

In the presence of a temperature gradient, when steady state is established, the
Boltzmann equation can be written as [17, 41, 42]:

i (a—”) , (2.17)
0t/ scatt.

where, the left- and right-hand sides represent the balanced rates of change of a perturbed
phonon distribution n of a given phonon mode due to the temperature gradient VT
(transport term) and due to the phonon scattering processes (collision term),
respectively, while v denotes the group velocity of the phonon mode. Each phonon
mode can be characterised by an angular frequency w = w(q, b) which is a function of
the phonon wave vector g and the phonon polarization b (branch index), so that n =
n(q, b) and:

dw(q, b)

5 (2.18)

vG(ql b) =

In the case of a monatomic lattice (i.e., a Bravais lattice) consisting of N atoms, which
will be considered in the present work, there are 3N possible phonon modes with b = 1,
2 and 3 enumerating the three acoustic branches, one longitudinal and two transverse.
Furthermore, if the deviation of n from the equilibrium phonon distribution n, is

assumed to be small, in the transport terms of Equation 2.17 one can replace n by n, by
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keeping only the first order in the temperature gradient. Considering that the equilibrium
phonon distribution is given by Bose-Einstein statistics [17, 41, 42]:

ny = [exp (:B—a;,> — 1]_1, (2.19)

one can readily obtain:

on dny, ¢ 220
T~ T ~ hw’ (2:20)

where, kg is the Boltzmann constant, # is the Planck constant divided by 2, while:

2(1)2

€T kgT?

(1 +ngIng (2.21)

is the phonon specific heat.

However, a rigorous theoretical construction of the collision term that leads to a
satisfactory solution of Equation 2.17 is much more difficult [43]. The main point here is
to understand in detail how to precisely evaluate the collision term in order to make it
applicable for a reliable description of the phonon-phonon scattering processes spanning
the entire frequency range, from the low-frequency domain to the Debye frequency.
Indeed, despite both the low- and high-frequency domains being experimentally
accessible at present using ultrasonic and light scattering techniques and neutron scattering
techniques, respectively, because of experimental difficulties, very little is known about
the intermediate frequency region [44-47]. Future progress in this context might be
expected with the development of modern laser and cold neutron based scattering
techniques. At the same time, it should be noted that the different phenomenological
models have been intensively studied for approximate treatments of the collision term of
Equation 2.17 [17]. One of the most widely used treatments for analysing the experimental
data on lattice thermal conductivity is the treatment attributed to Callaway [36].

Callaway’s treatment is based on the so-called relaxation-time approximation [17]
of the collision term in Equation 2.17 by an expression of the following form:
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X

(a_n) n-ng n-ng (2.22)
0t /scatt. ' .

hw—hqu
where, nj = no( —
B

) is the so-called displaced phonon distribution which can be

viewed as the equilibrium phonon distribution relative to a coordinate system which
moves with velocity u (u is the drift velocity in the direction of the heat flow), 7y =
ty(q, b, T) is the mode-dependent relaxation time for the U-processes (in the presence
only of the phonon-phonon scattering process) to restore a perturbed phonon distribution
to an equilibrium phonon distribution, and 7y = 75(q, b, T) is the mode-dependent
relaxation time for the N-processes to restore a perturbed phonon distribution to a
displaced phonon distribution. This phenomenological approximation of the collision
term is qualitatively in line with the abovementioned reasoning that the non-resistive
scattering N-processes should have an effect on the lattice thermal conductivity, but not
the same as the resistive scattering U-processes, which tend to restore the true thermal
equilibrium [17]. Then, assuming that the magnitude of the drift velocity u is noticeably
smaller than the magnitude of the phonon phase velocity vp(q, b) = w(q, b)/q for all
acoustic phonon modes (u < vp(q, b)), one can expand ny to the first order in vpu/vj

as:

Vpu

’ ~ —
nyg = ng + PR
P

T, (2.23)

and readily find the solution of the Boltzmann equation as:
Cc
n=ngy— %TM‘UGVT , (224)

where, Ty = T (q, b, T) is an effective relaxation time for a given phonon mode. It is

relatively simple to see that Ty can be expressed as:

Tc H
™M =Tc+— ,
TN VpVg

(2.25)

where, 7c = 7¢(q, b, T) is a combined relaxation time determined as:
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=—+—, (2.26)

and u can be interpreted as the phonon mobility, since it is the coefficient of the
proportionality between the drift velocity u and the thermodynamic force X = —%VT due

to the temperature gradient:
u = uX. (2.27)

The phonon mobility can be determined from the condition that the rate of changing the

total phonon momentum due to the N-processes must be zero:

3N
n(ql b) - né(q’ b) _
Z hg =T =0 (2.28)

q.b

For a cubic crystal (isotropic case), this leads to (see also Equations 2.23 — 2.27):

_i’v:c(q, b)ve(q,b)tc(q,b) /321\]: c(q,b)zc(q, b) (2.29)
q.b v

B vp(q, b)7x(q, b) 2(q,b)ty(q, b)tn(q,b)’

Once the Boltzmann equation is solved for n(q, b), either from first principles, or
by using different approximate approaches, one can find the microscopic heat current

vector per unit volume V (the heat flux) in the form first derived by Peierls [41, 42]:

1 3N
]= ;; ho(4,b)n(a, b)ve(a, b). (2:30)

It is important to note that ] = 0 when n = n,, since w and n, are even functions of q
while v is an odd function of q. In particular, it is straightforward to see from Equations

2.24, 2.25 and 2.30 that the expression for the lattice thermal conductivity of a cubic
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crystal, which follows from Callaway’s treatment of the collision term, can be written

as.
k = _% — kfallaway + k;:allaway, (2.31)
where
1 3N
RE = ) e, b)vE (g, brc(a,b) (232)
q,b

3N
b ,b ,b
j Callaway _ % zc(q )ve(q, b)tc(q )_ 2:33)
q,b

2 UP(q’ b)TN(ql b)

Despite the purely phenomenological inclusion of the contribution of the
N-processes in the collision term, without clear physical elucidation of their role in the
restoring of the equilibrium phonon distribution, Callaway’s treatment had great success
in interpreting experimental results over the simplest (single) relaxation-time
approximations which neglect the second term on the right-hand side of Equation 2.22
[17]. Even using the simplifying assumptions of the Debye theory, Callaway’s
expression for the lattice thermal conductivity [36], consisting of two terms, is able to
reproduce the experimental data with a reasonably good accuracy [17]. Thus, Callaway’s
treatment remarkably demonstrates that in order to properly fit the experimental data on
lattice thermal conductivity, one needs to construct the collision term in the Boltzmann
equation in such a reasonable way that underlines the roles of the U-processes and the
N-processes in restoring equilibrium and the displaced phonon distributions,
respectively. As a result, this can be considered as a strong indication that a relevant
solution of the Boltzmann equation should eventually lead to the decomposition of the
lattice thermal conductivity into two distinct contributions.
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2.1.8 Real Space and Phonon Space

The analysis of the phonon heat conduction in crystal structures is usually done in the
phonon or wave-vector spaces. Thermal conductivity is influenced by the phonon’s
characteristics, such as mean free path, velocity, etc. The design and synthesis of new
materials are realized in real space, while the phonon space is more convenient for the
analysis of their thermal properties [48]. Hence, defining a relationship between the real
space and the phonon space is essential for the effective application of information on
lattice dynamics. In this research, molecular dynamics simulation is considered where
the Newton laws of motion have been used to predict the position and momentum space
trajectories of a classical particles system. The atomic structures and suitable interatomic
potentials are inputs that can be achieved from experimental data or ab initio®® results.
Molecular dynamics simulation can also provide an opportunity to investigate the

phonon dynamics in greater detail [2].

2.2 The Molecular Dynamics Method

Thermal transport phenomena have been an attractive research topic for many years, and
as a result many methods, such as Molecular Dynamics [49], Monte Carlo [18] and the
Boltzmann transport equation, have been used to investigate thermal transport
numerically [50]. MD is a computer simulation method where the time evolution of a
set of interacting atoms is followed by numerically integrating their equations of motion.
It has two different types: the first type is ab initio molecular dynamics and the second
type is classical molecular dynamics?’ [1]. At high temperatures (approximately above
the Debye temperature) classical MD simulations have been successfully used to

calculate thermal conductivity [1].

During phase transformations or recrystallization processes, latent heat gives rise
to a thermal gradient in the local region surrounding an interface. As a result, the
interface mobility, which is one of the most important properties of an interface, can be

16 The term ab initio means that from first principles one can make a rational approximation of the solution
of the Schrédinger equation.
17 Classical molecular dynamics calculates the time dependent behaviour of a molecular system.
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affected [51]. Despite the importance of interface mobility in understanding the physics
underlying the kinetics of phase transformation or recrystallization, there are only a few
successful experimental measurements of interface mobility [52, 53]. Currently, much
of our understanding of the kinetic properties of interfaces has been derived from MD
simulations [51, 54, 55]. However, one would expect that the classical MD simulations
of metals underestimate the magnitude of the thermal conductivity due to the absence of
the free-electron contribution [9]. Accordingly, without an accurate knowledge of the
thermal conductivity it is difficult to assess how well classical MD simulations of metals,
together with EAM interatomic potentials [40], are able to predict the kinetic properties
of interfaces. Indeed, there is a concern in predicting non-equilibrium flows in the local
region surrounding an interface, since the free-electron contribution to the thermal

conductivity can outweigh the phonon contribution [9].

2.2.1 Thermodynamic Ensembles and Equations of Motion

MD uses the classical equation of motion, which comes from the second law of Newton,
and is expressed as F. =m.a,, where F is the force [kgm/s?], m. is the mass [kg], and &

is the acceleration [m/s?]. The integration of Newton’s equation in MD simulations is
usually achieved through several algorithms, including the velocity Verlet, Verlet leap-
frog, and Gear predictor-correction algorithms, that are dependent on the
thermodynamic ensembles [12]. The most natural ensemble® is the NVE (micro
canonical) in which the number of atoms N, the system volume V and the total energy
E, are all fixed quantities, while the temperature and pressure of the system fluctuate
around their average values. In other ensembles, the temperature and pressure of the

system can be set through the application of different thermostats® and barostats.?° In
the NVE ensemble, the equation of motion for particle i is expressed as F; = % . In this

study, the Verlet leap-frog algorithm has been used, where the positions and momenta

are offset by a half time step [56], as shown in Equations 2.34 and 2.35:

18 The most natural ensemble is the NVE since Newton's equations of motion lead naturally to the
conservation of energy.
19 A thermostat is a part of a control system which adjusts the system's temperature near a selected set
point.
20 A barostat is a device used to preserve constant pressure in a closed chamber.
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Aty At
r(t+At) =r;(t) + p; <t + —) —, (2.34)
2 m;
At At
P (t + ?> = P (t — ?> + Fl'At, (235)

where, m; is the mass of atom i, whereas r; and p; are the position and momentum
vectors for atom i, respectively.

When the MD simulations run with a thermostat, the system is said to be in the
NVT (canonical) ensemble where the equation of motion is modified with the damping

parameter n as: % = F; —np; [2]. The authors of [2] described that the damping

parameter changes in time according to the following ordinary differential equation:

an i( r_ 1), where 71 is the reservoir-system time constant and T, is the

dt - ‘L'TZ Tset

desired temperature. When the independent variables are the system mass, pressure and

temperature, the system is said to be in the NPT (isobaric-isothermal) ensemble. In this

case, the equation of motion is expressed as % = F; — np; — ep; with the time history

of parameter € being specified as: &= iz( E_ 1), where 7, is the barostate time
dt Tp Pset

constant and Ps,; is the pressure [56]. The Nosé-Hoover thermostat is used to generate
suitable temperature fluctuations for the NPT and NVT ensembles. The Nosé-Hoover

barostat can produce the appropriate pressure fluctuations for the NPT ensemble [2].

2.2.2 Periodic Boundary Condition

MD simulations consist of thousands of atoms in a small system. As a result, a periodic
boundary condition is used to prevent problems with boundary effects due to the finite
size of the simulation cell. This ensures that the number density of the atoms in the
simulation domain and the momentum of the whole system are preserved [57]. In this
case, when a particle moves in the central cell, its periodic image particles in each of the

neighbouring cells move in the same direction, as shown in Figure 2.7,
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Figure 2.7: Schematic illustration of the effect of the periodic boundary conditions in a three

dimensional system.

2.2.3 The Limitations of the MD Method

(i)

(ii)

(iii)

As with any simulation technique, MD simulations have some limitations:

The time limitation is the most common problem in MD simulations. It
is usually within 1 ps. The simulation time should be much longer than
the relaxation time of the quantities as systems tend to become slower
around phase transitions [58].

The size limitation is the second important limitation. It should be within
the length scales ranging between 1 nm and 1 um. Because the correlation
lengths may increase or even diverge around phase transitions, the results
are not reliable when they become equivalent with the size of the MD cell
[59].

In MD simulations, the temperature should be above the critical
temperature where the classical description of the atomic dynamics is
applicable. In this case, at low temperatures the quantum effects become

important in any system [58].
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2.2.4 The Interaction Model: Lennard-Jones Potential

The Lennard-Jones pair potential model is a mathematical model that describes the

potential energy U;; between two particles. The potential energy changes with the

distance between the interacting bodies r;; [19, 60]:

where, 7;; is the distance between the centres of two particles, o is the finite distance and
¢ is the depth of the potential well. Figure 2.8 shows the Lennard-Jones potential versus
the separating distance (r;;). The parameters € and o are chosen to fit the physical
properties of the material [60]. The first and second terms in the right-hand side of

1

12 6

Equation 2.36, ((;) (%) ), are dominated by short and large distances,
ij ij

respectively. This potential is strongly repulsive as two uncharged atoms come too close

to each other; however, this potential is weakly attractive when they approach one

another from a distance. Also, at the minimum of the Lennard-Jones potential, when the

pair of atoms tend to go into a separation, distance is at equilibrium. Nevertheless, the

depth of the well increases with the intensity of the force [19].
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Figure 2.8: Lennard-Jones potential (U) versus separating distance. It shows regions of
attraction and repulsion. R is the distance between the centres of two particles, ¢ is the chosen

finite distance and ¢ is the depth of the potential well.
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2.2.5 The Embedded-Atom Method (EAM)

Introduced by Daw and Baskes in 1984 [40], the EAM is a semi-empirical method?! that
describes the energy between atoms. As each atom embeds in a host lattice including all
other atoms, they nominated the theory of the embedded-atom method [40]. The EAM
is generally used in several different types of calculations, such as MD, Monte Carlo,

and energy minimization [61].

In the EAM formalism, the potential energy of an atom i, is defined as: E; =
FoZizjpp (ri)] + %Ziij @ap(r:j), where r; ; is the distance between atom i and j, @,
is a pair-wise potential function, pg is the electron density from atom j of type f at
location of atom i, F,, is the embedding function for type «, and a and S are the element
types of atoms i and j, respectively [62]. This equation describes that the interaction

energy between two atoms depends on the distance between them and the environment
around them [63].

In the form of embedding energy, F, [Ziij Pp (rij)], the EAM presents a proper

definition of the volume dependent energy that is added in the pair-potential theory to

define the elastic properties of metals [63].

2.2.6 The Direct Method

The direct method is a non-equilibrium method that calculates the thermal conductivity
from the ratio of a heat flux and temperature gradient (k = —Q / (0T /0x)). In this
method, two types of simulation cell can be used: with either fixed or periodic boundary
conditions. A fixed end boundary is divided into Ns equal slabs and it is suitable for
finite-sized structures where heat flows in one direction from the hot slab to the cold
slab. For periodic boundary conditions, the simulation cell is broken into Ns equal slabs
perpendicular to the x direction and they are repeated periodically. As shown in Figure

2.9, the hot slab is located at the centre part of this box (0) and cold slabs are located at

2L Semi-empirical methods are based on the Hartree-Fock formalism by introducing functions with
empirical data.
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Ns/2 and —Ns/2. Thermal energy is transferred from the hot slab to the cold slab [4]. The
simulation cells consist of tens or hundreds of thousands of atoms that need a hundred
thousand time steps for converging. The direct method predicts the thermal conductivity
directly from the simulation in one direction and is an appropriate method for studying

finite structures such as thin films [2].

Cold Hot Cold Hot Cold
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(a) (b)

Figure 2.9: (a) Schematic diagram of the periodic simulation cell used in the non-equilibrium
method. Hot slab (0) and cold slabs (at Ns/2 as well as at —Ns/2) are shown in red and blue
colours, respectively. There is a heat flow out from both sides of the hot slab. (b) Schematic

diagram of the fixed boundary condition.

2.2.7 The Green-Kubo Method

Equilibrium MD simulations can also be used to compute the thermal conductivity of
materials [1, 3, 64, 65]. It has been demonstrated that equilibrium MD, combined with
the Green-Kubo formalism, is an effective method to estimate thermal conductivity and
to also calculate the phonon transport properties of materials. A brief overview of the
application of this method is given below.

In the Green-Kubo method, which is based on an equilibrium system for an
isotropic material, the thermal conductivity, k, is given in terms of the time integral of
the HCACF, (J(t)J(0)) by Equation 2.37 [66]:

1
k =
3VkgT?

f J@)J(0))de, (2.37)
0
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where, V is the volume of the simulation cell, kg is the Boltzmann constant, T is the
absolute temperature, J is the heat current vector and t is the time. In general, the heat

current vector is described by the following equation:

d del-
] = a Z er; | = Z e;iv; + Z r; E, (238)
i

i i
where, the summations are over the atoms in the system, and e;, r;, v; are the total
energy, radius-vector and velocity vector of the i-th atom, respectively. The first term in
Equation 2.38 on the right side is associated with convection, whilst the second is
associated with conduction. The implementation of the Green-Kubo method has no
effect on the atomic dynamics and the system temperature is uniform and constant. In
addition, this elegant but time consuming method allows for the calculation of the
temperature dependence of the thermal conductivity. Furthermore, one can use
equilibrium MD simulations to investigate the phonon dynamics, for example, by
analysing the HCACF [2].

2.2.8 Overview of Previous Works

MD simulation was introduced by Alder and Wainwright at Lawrence Livermore
National Laboratory [67]. They used a “hard sphere”?? model that described their
dynamic properties without approximations. This was the first time the molecular
simulation technique was used [67]. Rahman then used the Lennard-Jones potential
function to define the potential interaction in argon (Ar) particles, and this algorithm has
been used in many molecular dynamic simulation codes [68]. It was clearly shown that
the phase space trajectories of atoms or molecules can be computed by molecular

dynamics [69].

The Green-Kubo method has been successfully used to calculate the thermal
conductivity of some materials during the last decades [1-3, 65]. Ladd et al. [65]

22 The hard sphere model is a perfect model of atoms motions in a container.
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considered a f.c.c. crystal model that used MD and the Green-Kubo method to compute
thermal conductivity. They also calculated the lifetimes of all the phonons using MD
and developed a harmonic perturbation theory? in order to determine the thermal
conductivity. They found that the results of the Green-Kubo method complied with the
phonon perturbation theory at low temperature. It was also the first time that the Green-
Kubo method was used to calculate thermal conductivity in three dimensional solids. In
addition, He et al. [4] investigated the heat transport in bulk silicon (Si), germanium (Ge)
and silicon germanium (SiGe) alloys using equilibrium molecular dynamics and the
Boltzmann Transport Equation, with 10°—10° atoms in the temperature range close to
or above the Debye temperature. Consequently, their results showed that the equilibrium
MD was a strong method to describe the thermal transport at high temperature conditions
close to the Debye temperature [4]. Moreover, equilibrium MD simulations also provide
a detailed atomistic interpretation of the different contributions to the conductivity. In
addition, Tretiakov and Scandolo [64] and Sellan et al. [70] studied the system size
effects in the MD thermal conductivity predictions. They found that the size effects in
the thermal conductivity were negligible. Schelling et al. [71] used non-equilibrium and
equilibrium MD simulations to predict the thermal conductivity of silicon. They found

that there is a good agreement between the two techniques at a temperature of 1000K.

In the last decade, McGaughey and Kaviany [1] investigated the thermal
conductivity of Ar by using MD simulations with the Green-Kubo method. Their results
showed that, at low temperature, the HCACF has two stages of decay. This was first
observed in the HCACF in MD simulations [65]. McGaughey and Kaviany [1, 2] fitted
the HCACF to a sum of two exponential functions as suggested by Che et al. [72]:

%(](t)](O)) = A,exp ( t) + Ayexp <;—t>, (2.39)

T1 2

where, (...) means an average taken at the thermodynamic equilibrium, J is the

microscopic heat current vector per unit volume, t is the time, ; and t, are the time

23 Perturbation theory is a set of approximation schemes that are related to mathematical perturbation for
describing a complicated quantum system in a simpler condition.
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constants, and A, and A, are the strengths, while the subscripts “1” and “2” refer to the
acoustic short- and long-range phonons, respectively. McGaugey and Kaviany [1, 2]
interpreted the two-stage behaviour of the HCACF of f.c.c. Ar in the context of the
phonon mean free path (or its temporal representation — the mean phonon relaxation
time). The first and second terms on the right side of Equation 2.39 describe two time
scales of the decay, which are associated with the acoustic short- and long-range
phonons respectively (optical phonons cannot be present, as the unit cell is monatomic).
Physically, the lower bound on the mean free path is given by half of the phonon
wavelength, known as the Cahill and Pohl limit [1, 2, 73]. Hence, according to [1, 2],
the first time scale in the HCACF decomposition, described by the mean phonon
relaxation time t,, corresponds to those phonons with a mean free path equal to one half
of their wavelength. The second time scale, described by the mean phonon relaxation
time t,, is longer, and corresponds to the acoustic phonons with mean free paths longer
than one half of their wavelength [10,14]. With Equations 2.37 and 2.39 in hand, the

thermal conductivity is given by:

kph = W(Alrl + Asz) = kl + kz, (2.40)

McGaughey and Kaviany [1, 2] pointed out that in the decomposition given by
Equation 2.40, all of the temperature dependence of the thermal conductivity is
contained in k,, while the short-range component, k,, shows little temperature
dependence. These authors also argued [1, 2] that phonons with a mean free path of the
order of their wavelengths (as assumed for the acoustic short-range phonons) should
have wavelengths of the order of a few atomic spacing, i.e., they are supposed to be in
the higher frequency range of the acoustic branches. This suggests that 7; and &k, should
be strong functions of the coordination of the atoms [1, 2]. Thus, the small temperature
dependence of k; is a result of the coordination of the atoms remaining constant as the
density changes with temperature. Overall, the predicted temperature dependence of the
thermal conductivity of the MD model of the f.c.c. Ar was found to be in agreement with

the trend and magnitude of the experimental data [1, 2] .
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Using the Lennard-Jones pair potential with a longer cut-off radius, Kaburaki et
al. [3] also demonstrated that the temperature dependence of the experimentally
measured thermal conductivity of f.c.c. Ar can be reproduced with good accuracy by the
equilibrium MD simulation in conjunction with the Green-Kubo method. In addition,
the authors [3] found that the absolute values of the thermal conductivity and the two-
stage relaxation of the HCACF are in agreement with the results reported by McGaughey
and Kaviany [1, 2]. However, Kaburaki et al. [3] differ from the previous authors [1, 2]
in the interpretation and analysis of the HCACF. They attribute the first-stage of
relaxation to the single-particle motions sampling the local environment of the system,
whereas McGaughey and Kaviany [1, 2] regard this relaxation to be associated with the
short wavelength acoustic phonons, as mentioned above. Furthermore, Kaburaki et al.
[3] pointed out that the first stage of relaxation is not properly described by a single
exponential function. Indeed, they observed a slight plateau (shoulder) for short times at
low and intermediate temperatures, which had not been noted previously. The authors
[3] suggested that it may be associated with the collective oscillations, possibly of a
transverse or shear nature, and highly damped. Nonetheless, Kaburaki et al. [3] also
expect that, overall, the first stage of the relaxation of the HCACF will be relatively
insensitive to temperature because the local environment surrounding a particle does not
change much, even when the system goes from a low-temperature solid to the liquid
phase and loses long-range ordering. Regarding the second stage of the relaxation of the
HCACF, Kaburaki et al. [3] are in agreement with McGaughey and Kaviany [10,14] that
the underlying process is the lattice vibrations or the phonons. According to [3], this part
Is also expected to be sensitive to temperature variations because long-range ordering is

needed to sustain the collective motions.

Thus, the commonly accepted main feature of the HCACF of f.c.c. Ar predicted
by the equilibrium MD simulation with the Lennard-Jones pair potential is a two-stage
decay (relaxation) [1-3]. This was in contrast to the Peierls theory of thermal
conductivity, which is consistent with a single-stage decay of the HCACF [1-3, 65].
Ladd et al. [65] quantitatively examined the approximations involved in deriving the
Peierls phonon-transport expression for the lattice thermal conductivity. They
demonstrated that the Peierls expression of the heat current is only an approximation to
the full atomistic Irving-Kirkwood expression [74], which disregards the short-time
contribution to the HCACF. Unfortunately, no results could be found in the literature

57



Chapter 2: Background and Literature Review

regarding phonon thermal conductivity calculations in metals within the framework of
the EAM using equilibrium MD simulations in conjunction with the Green-Kubo
formalism. However, aside from the aforementioned importance of knowledge of the
phonon thermal conductivity in problems dealing with predicting the kinetics properties
of interfaces in metals using classical MD simulations, it is of fundamental interest to
investigate the phonon dynamics in an EAM potential model by analysing its HCACF

in comparison with the HCACF of the Lennard-Jones pair potential model of argon.
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Chapter 3: Research Methodology

Following on from the discussion in Chapter 1, a fundamental understanding of the
generic features of the lattice thermal conductivity and phonon dynamics can be
advanced, in particular, by a systematic MD study of the HCACF of a set of high-quality
models of isostructural materials with a simple crystal lattice. An appropriate choice for
this study is a set of MD models of f.c.c. metals such as Cu, Ni, Al, and Ag. The choice
was mostly determined by the availability of state-of-the-art first principles-based many
body potentials developed for these metals within the framework of the EAM [5-8]. In
this research, the interaction between the atoms in the MD model of f.c.c. Ni are
described by using two different EAM interatomic potentials developed by Mishin et
al.. The first one nominated was Nieam: (published in 1999) [7], and the second was
Nieamz (published in 2004) [6].
In general, the total energy of an atom i is represented in the EAM model [5]as:

1, 1
e = Emivi + Fui(p) + 2 Z Vﬂiﬂj(rij)’ 3.1)
ICD)

in this equation the %miviz describes the kinetic energy, where m; is the mass of the atom,
v; is the absolute value of the velocity vector of the atom, F, (p;) is the embedding
energy of the atom as a function of the host electron density p; induced at site i by all

other atoms in the system, and Vi, (ri j) is the pair interaction potential as a function of
the distance r;; between atoms i and j (; and p; indicate whether the functional form

for the species of atom i or atom j are used). The host electron density p; is given by:

pi = Z Pui(Tij), (3.2)
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where, Pu; (rl-j) is the electron density induced by an atom j at the location of atom i. In

particular, for a monatomic system this model involves three potential functions, F(p),
V(r) and p(r), which can be treated as some fitting functions that have to be reasonably
parameterized. In this work, the interactions between atoms in the MD model of f.c.c.
metals are described by using an EAM potential developed by Mishin et al. [5-8]. The
potential functions were obtained by fitting to the experimental and first principles data.
This potential accurately reproduced the lattice parameter, cohesive energy, elastic
constants, phonon frequencies, thermal expansion, lattice-defect energies, and other
relevant properties of the metals. The melting temperature of Cu, Al, Nieam2 and Ag
predicted by this potential were 1327 K, 1042 K, 1701 K and 1267 K, which were in
good agreement with the experimental values of 1357 K, 933 K, 1728 K and 1235 K,
respectively [75].

Following on from Equations 2.38, 3.1 and 3.2, the Cartesian components of the
heat current vector in a system using an EAM Potential model can be represented as [76,
77]:

1d ®)
]qa = VE Z €iXig | = VZ €iXiqg — Z Q; i0iagVip (3.3)

where:

(p) Z [ ](pl) apﬂl(rl]) 4z 1 anu] (rij) XijaXijp (3.4)

m—’ﬁ i = apl aTU 2 aTU rij ’

Q; is the volume of atom i, the symbols a and 8 enumerate the Cartesian components of

the vectors and tensors: x;,, X;j, (Or x;;5) and v, (or v;) are the components of the

vectors r;, r;; and v;, respectively, while 01(23

to the components of the stress tensor of atom i. For symbols that enumerate the

denotes the potential energy contribution

Cartesian components of the vectors and tensors, the Einstein summation notation is

implied.
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In this study, a wide temperature range for each metal was considered (see Table
3.1 for details). It has previously been argued [72] that the dominant contributors to the
thermal transport in crystals are the long wavelength phonons which are active even at
low temperatures. Moreover, there is no evidence to support the use of quantum
corrections with the classical MD thermal conductivity predictions at relatively low
temperatures, up to around one-tenth of the Debye temperature [2]. This is in contrast to
the specific heat, where the high-frequency (short wavelength) modes become excited
as the temperature of the quantum system is increased, leading to a significant

temperature dependence up to the Debye temperature [2, 72].

All the reported data were averaged over the MD simulations in the NPT
(isothermal-isobaric), NVT (canonical) and NVE (microcanonical) ensembles at zero
pressure. A Nosé-Hoover thermostat was used for the NPT and NVT ensembles and a
Noseé-Hoover barostat was used for the NPT ensemble. The cubic simulation block was
composed of 4000 atoms with periodic boundary conditions in all three directions. The
MD simulations were started in the NPT ensemble. The obtained equilibrium (zero
pressure) value of the system volume at each temperature was subsequently used as an
input for the MD simulations in the NVT and NVE ensembles. The obtained temperature
dependences of the equilibrium (zero pressure) atomic volumes Q = V /N of the f.c.c.
Cu, Al, Nieam1, Nieam2 and Ag models are shown in Figure 3.1. The atomic volume

versus temperature data can be satisfactorily fitted by the equation:

0= ‘QO + aQT + ,BQTZ, (35)

with the parameters introduced in Table 3.2.
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Table 3.1: Temperature ranges for f.c.c. Cu, Al, Nieam1, Nieamz and Ag.

10 K in temperature range 40-100 K

Cu 40-1300 )
100 K in temperature range 100-1300 K
NiEAMl, NiEAM2 100-1700 100 K
Al 100-1000 100K
10 K in temperature range 40-100 K
Ag 40-1200

100 K in temperature range 100-1200 K

Table 3.2: Atomic volume parameters for the quadratic equations (see Equation 3.5) in the cases

of f.c.c. CU, A|, NiEAMl, NiEAMZ and Ag.

Cu 11.81x10°3 4.8x107 1.6x101°
Nieam1 10.92x10°3 3.1x10” 5.7x10
Nigam2 10.9x10°® 1.97x10”7 1.03x10%0

Al 16.61x10°3 5.01x107 4.04x1010

Ag 17.1x10°® 9.64x107 2.18x101°

62



Chapter 3: Research Methodology

12.75

12.50 1

12.25

12.00

Atomic Volume (10°hm’*/atom)

11.75

0 260 50 780 1040 1300
Temperature (K)

(@)

17.75

17.50

=

~

N

[&;]
1

Atomic Volume (10°nhm’/atom)
5

16.75 -

16.50

0 200 400 600 800 1000
Temperature (K)

(b)



Chapter 3: Research Methodology

11.7

11.54

Atomic Volume (10°nm’/atom)
° &

109 T T T T T
0 340 680 1020 1360 1700
Temperature (K)
()

117
g
8 115-
=
mC
o
o
@ 11.34
=
o
>
[&]
'€ 1114
e
<

109 T T T T T

0 340 680 1020 1360 1700
Temperature (K)
(d)

64



Chapter 3: Research Methodology

19.0

18.5

Atomic Volume (10°hm*/atom)
= 6o
h T

7+
0 200 400 600 800 1000 1200
Temperature (K)
(e)

Figure 3.1: Temperature dependence of the equilibrium atomic volumes of the EAM potential
models [5-8] of f.c.c. (a) Cu, (b) Al, (c) Nigami, (d) Nieamz, and (e) Ag according to the MD
simulations of the NPT ensemble. The solid line shows the fit of the MD data by Equation 3.5.

After the equilibration of the system at a given temperature by performing a run
of 150 ps (10°At, At=1.5fs is the time-step), the HCACF was calculated during a
production run. The length of the production run, as well as the correlation length and
the number of time origins used in the HCACF calculations, were varied depending on
the temperature (see Table 3.3 for details). This is because the time of the HCACF decay
increases as the temperature decreases. It should be noted that, in order to set a given
temperature for the NVE ensemble, the first 75ps (5x10%At) of the equilibration run
were always done in the NVT ensemble.
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Table 3.3: Details of the HCACF calculations.

Length of . .
Temperature . Correlation length Number of time
Metals production run -
(K) (ps) origins
(ps)
40-90 15000 150 ~108
100 - 200 15000 75 ~108
Cu
300 3000 30 ~2%x10°
400 - 1300 1500 15 ~10°
100 15000 75 ~107
Al 200-300 15000 30 ~107
400-1000 15000 15 ~107
] 100-300 15000 30 ~107
Nigamz
400-1700 15000 15 ~107
100 15000 150 ~107
] 200-300 15000 60 ~107
Nigam2
400-600 15000 30 ~107
700-1700 15000 15 ~107
40-90 15000 150 ~107
Ag 100-300 15000 30 ~107
300-1200 15000 15 ~107

According to the Debye theory, the shortest wavelength A that can be propagated
through a lattice is (4mQ/3)/3, where Q is the atomic volume [21]. For an f.c.c. lattice

with a lattice constant (a), we have Q = a3/4, so that:

Ap = (§) a (3.6)

Then, the Debye frequency can be estimated as:
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wp = —— (3.7)

where s is the average speed of sound (or phonon speed). Next, in the Debye
approximation, the average speed of sound sg in a given direction & of a crystal can be
assessed as the harmonic mean of both the cubes and squares (see Equations 3.8 and 3.9

[21]) of the speeds of sound for longitudinal and transvers polarizations.

:T+3_+3_’ (38)

=ttt (3.9)

where s; 5, s¢, 5 and s, s are the phonon speeds of the longitudinal mode and the two
transverse modes, respectively, in the given direction §. Normally, the longitudinal
mode has the highest speed, while the two transverse modes have lower speeds. This
reflects the fact that the longitudinal mode is essentially a compression wave, for which
the elastic restoring forces are stronger than for the transverse (or shear) waves [21]. The
phonon speeds of the three modes in three low-index directions [100], [110] and [111]
in a cubic crystal are given by [21]:

’Cn Cys
Si[100] = 7» St,,[100] = St,,[100] = 7 (3.10)

in the [100] direction:
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_ Ci1+ Cip + 20y, _ Cys4 _ €11 — Cyz
Si[110] = 20 ) Sty [110] = 7' St,[110] = T

(3.11)

in the [110] direction, and

Ci1— Ci2 + Cyy
3p

Si111] =

3p ) St,,[111] = Sty,[111] =\/

(3.12)

in the [111] direction. In Equations 3.10 — 3.12, C;4, C;, and C,, are the elastic constants
and p is the mass density. The following calculations estimate the average phonon speed

in the f.c.c. Cu, Al, Ni and Ag models as:

1
$=3 (Sr1001 + Sra10) + Sp1117), (3.13)

where spy00), S[110] @nd spq1qare the average phonon speeds in the three low-index
directions [100], [110] and [111], respectively, as determined by Equations 3.8 and 3.9,
using Table 3.4. Finally, using Equations 3.6, 3.4 and 3.13, we can estimate the Debye
temperature of the MD models for f.c.c. Cu, Al, Ni and Ag as:

Ty = (3.14)

where, h is the Planck constant divided by 27 (reduced Planck constant) (see details in
Table 3.5).
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Table 3.4: The elastic properties of f.c.c. Cu, Al, Ni and Ag according to Mishin et al. [5-8],

Debye wavelength and the phonon speeds of the longitudinal mode and two transverse modes

in three direction for f.c.c. Cu, Al, Ni and Ag.

Parameters Units Cu Al Ni Ag

a A 3.615 4.05 3.52 4.09
Ciq GPa 169.9 114 247 124.2
Ci> GPa 122.6 61.6 148 93.9
Caa GPa 76.2 316 125 46.4
Ap A 3.671 4113 3.575 4,153
S1[100] km/s 4.36 6.501 5.26 3.44
St,[100] km/s 2.92 3.42 3.74 2.11
- km/s 2.92 3.42 3.74 2.11
Su[110] km/s 4.99 6.65 6.01 3.85
St [110] km/s 2.92 3.42 3.74 2.11
St, [110] km/s 1.63 3.12 2.35 1.203
Suf111] km/s 5.18 6.703 6.24 3.98
Sty [111] km/s 2.15 3.22 2.89 1.56
St [111] km/s 2.15 3.22 2.89 1.56

Table 3.5: The average speed of sound, Debye frequency and Debye temperature of f.c.c. Cu,

Al, Ni and Ag for the first and second cases. All quantities presented in this table are introduced

in the text.

Quantities Units

S[100]
S[110]

ST111]

km/s
km/s
km/s
km/s
THz
K

Cu Al Ni Ag

Cube Square Cube Square Cube Square Cube Square
Eq Eq Eq Eq Eq Eq Eq Eq
319 323 383 393 405 409 232 237
2.2 237 366  3.77 31 3.27 1.62 1.75
2.43 2.52 3.62 3.74 3.25 3.36 1.77 1.84
261 271 3.7 381 347 358 1091 1.99
446  46.34 56.6 58.2 61 62.9 28.8 30
341 354 432 445 466 481 220 229
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The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
was used in this work to carry out the molecular dynamic simulations. The fundamental

structure of the MD simulation is shown in the following flowchart (see Figure 3.2):

[ == = e e e em o e =
I |
_______ L N\ |
I [ Calculate heat flux and thermal |
conductivit
| Start | o v J 1
I H, | I
I [ A"l
| I | Temperature and Pressure | - ———-—-
Setup atomistic | control I |
I del and ' . L |
I model an I | I Output Results
eometr
, g y | I i Y | |
N—— : | Define atomic interaction | |
|
: (_ﬂ_\ L ) | : Results :
I Define atomic | | | L 1
) ) p SO R Y O
| Interaction 1 : Position and velocity update |
1 | |
I Initializing | [
I ! I
L e e = = = = | I Time step =
| nstep I
|
|
' |
1 Simulation I
|

Figure 3.2: Basic structure of the MD simulation.

As a sensitivity test of the system size, calculations were also performed with the
cubic simulation block composed of 32,000 atoms (it has a two times longer side length)

at various temperatures. The results will be explained in the following chapters.
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Chapter 4. The Heat Current Autocorrelation
Function (HCACF)

Figure 4.1 shows, as an example, the HCACF calculated over wide temperature ranges
(see Table 3.1) for the NPT, NVT and NVE ensembles, as well as averaged over the three
ensembles. Each curve was normalized by its zero time value to allow for a comparison
between the different temperatures. It can be seen that all four curves sit very close to
each other at all temperatures. This fact is reassuring that the calculations in all three

ensembles are equivalent.

The temporal decay of the HCACF of the f.c.c. (a) Cu, (b) Al, (c) Nigam1, (d)
Nieam2 and (e) Ag models (see Figure 4.1) at low and intermediate temperatures showed
a more complex behaviour than the two-stage decay observed in [1, 2] for the HCACF
of the f.c.c. Ar model, which was described by two exponential functions (see Equation
2.39).

In Figure 4.1(a), the first stage of the HCACF of the f.c.c. Cu model is an initial
rapid decay of up to 0.2 - 0.25 ps, which is similar to the first stage of the HCACF decay
of the f.c.c. Ar model [1, 2]. This stage was followed by a peak of around 0.5 ps in the
temperature range 40 - 800 K. The intensity of the peak decreased as the temperature
increased. At 900 K, it transformed to a shoulder which diminished almost entirely at
1200 K. Thus, at very high temperatures, of above 1200 K, the first stage decay was
directly followed by a longer second stage decay. As a result, in the temperature range
900 - 1100 K, indicating a shoulder after the first decay, the HCACF of the f.c.c. Cu
model is similar to the HCACF of the f.c.c. Ar model in [3] at low and intermediate
temperatures. It was surmised that the peak found in the f.c.c. Cu model was related to
the transition between the two stages of the heat dissipation. It may be activated by the
influence of the positive (non-zero) Cauchy pressure C;, — C44 = 46.4 GPa in f.c.c. Cu
[5] on the phonon dynamics. As mentioned above, the longitudinal phonons are
essentially compression waves, so that the positive Cauchy pressure may affect their
scattering whilst not affecting (or affecting much less) the scattering of the transverse
phonons which are shear waves. In any case, since a rise of the HCACF after the first
stage of the heat dissipation was observed, it was assumed that due to the positive
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Cauchy pressure, either the scattering of the acoustic long-range phonons slows down
or the scattering of the acoustic short-range phonons accelerates, or both processes take
place. This is stated here simply as a suggestion without any justification. A verification
of the proposition can be carried out during a systematic MD study of the HCACF of a
monatomic f.c.c. crystal with a pair potential which uses an accompanying volume-
dependent energy to manage the elastic properties of the model [40]. By varying the
volume-dependent energy, one can find the dependence of the HCACF on the Cauchy
pressure. Another approach would be to carry out a systematic MD study of the HCACF
of a monatomic f.c.c. crystal with an EAM potential. It is known that for an elemental
crystal, the Cauchy pressure is determined by the curvature of the embedding energy at
equilibrium [40]. Hence, by varying the curvature, one can also find the dependence of
the HCACF on the Cauchy pressure. These types of studies could provide a more
scientific grounding for the proposition. These areas are expected to be the subjects of
future work in this direction but lie beyond the scope of the present research.

A two-stage decay of the HCACF of the f.c.c. Al model (see Figure 4.1(b)) was
also observed. Namely, an initial rapid decay of the HCACF of up to 0.17 - 0.2 ps was
followed by a peak of around 0.29 - 0.34 ps. The intensity of the peak decreased as the
temperature increased. This peak persisted up to temperatures close to the melting
temperature of the f.c.c. Al model, while a similar peak on the HCACF of the f.c.c. Cu
model was observed to transform to the shoulder at high temperatures.

As observed for the f.c.c. Cu and Al models, a two-stage decay of the HCACF of
the f.c.c. Nieam: and Nieam2 models (for two EAM interatomic potentials [6, 7]) was
found (see Figures 4.1(c) and 4.1(d)). At low and intermediate temperatures, an initial
rapid decay of the HCACF of up to 0.2 - 0.22 ps was followed by a peak of around 0.45
- 0.5 ps below 1300 K. The intensity of the peak decreased as the temperature increased.
At high temperatures, above 1300 K, it transformed to a shoulder which tended to
gradually diminish at higher temperatures. Furthermore, in the f.c.c. Ag model (see
Figure 4.1(e)), an initial rapid decay of the HCACF was followed by a peak of around
0.6 - 0.75 and that the intensity of the peak decreased as the temperature increased which

almost diminished at very high temperatures.
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Figure 4.1: Normalized HCACF of the MD models of f.c.c. (a) Cu, (b) Al, (c) Nigam1, (d) Nigam2
and (e) Ag at different temperatures for the NPT (thin solid line), NVT (dashed line), and NVE

(dot-dashed line) ensembles, as well as averaged over the three ensembles (red solid line).
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In additional studies, an effect of the size of the simulation cell on the shape of the

HCACF was observed. In particular, Figure 4.2 gives the comparison of the HCACFs

of the f.c.c. Cu, Al, Nieamt, Nieam2 and Ag models at temperatures predicted from the

simulation blocks containing 4,000 and 32,000 atoms. As can be seen in Figure 4.2, in

both cases a good agreement between the calculations can be observed. This comparison

is an additional confirmation of the reliability of the results.
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Figure 4.2: Comparison of the normalized HCACF of the MD models of f.c.c. (a) Cu, (b) Al,
(c) Nieams, (d) Nieamz and (e) Ag calculated at three different temperatures with the simulation
blocks containing 4,000 (black solid line) and 32,000 (blue dashed line) atoms.
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Chapter 5: The Decomposition Model for Lattice
Thermal Conductivity

As mentioned in Chapter 4, a more complex behaviour was observed for the temporal
decay of the HCACF of the models of f.c.c. Cu, Al, Nigam1, Nieam2 and Ag at low and
intermediate temperatures in comparison to the two exponential functions (see Equation
2.39). Taking into account the observed shape of the HCACF of the MD models of the
f.c.c. for the four metals investigated at different temperatures (see Table 3.1), it was
found that the HCACF of the models of f.c.c. Cu, Al, Nieam1, Nieam2 and Ag can be
satisfactorily modelled with the following analytical function of the form (as shown in
Figure 5.1):

1 t t
€y (® = 3UDIO) = 4, exp (—T—) cos(w,t) + A, (—T—), (5.1)

1 2

where (..) means an average taken at the thermodynamic equilibrium, J is the
microscopic heat current vector per unit volume, 7; and A, are the time constant and
strength of the first-stage relaxation, respectively. This stage is associated with the
acoustic short-range phonons, and 7, and A, are the time constant and the strength of
the long-time decay of the HCACF associated with the acoustic long-range phonons,
respectively. Finally, the cos(w.t) model in this equation is the transition between these
two stages of the heat dissipation, so that the parameter w. can be described as the
characteristic angular frequency of the phonon modes at which the crossover between
the first and second stages of the HCACF relaxation occurs. In compliance with
McGaughey and Kaviany [1, 2], t, and 74, as well as A, and A, have the same meaning
as in Equation 2.39. The decomposition model, introduced by Equation 5.1 (page 81),
can capture all the characteristics of the HCACF behaviour for a monatomic f.c.c. lattice,
as discussed in the literature. Only the acoustic phonon modes are considered in this
study. Thus, the first and second exponential terms in Equation 5.1 (page 81) describe
the two time scales of the decay, while the cos(w.t) term models the transition between

the two stages of the heat dissipation.
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Such an interpretation of the observed HCACF relaxation is in accordance with
Klemens’ idea [78], which suggests that for a U-process linking a low-frequency phonon
mode w, with the two high-frequency phonon modes w, and w5 in the vicinity of the
zone boundary, the requirements of energy conservation given by w; + w, = w5 can be
satisfied only for the phonon modes with frequencies higher than a minimum (critical or
threshold) frequency w,, i.e. w; = w,.

Klemens also suggested that w. is approximately equal to the difference in
frequency of the two different polarization branches (longitudinal and transverse) in the
vicinity of the zone boundary. Thus, the low-frequency modes w < w, cannot directly
undergo the three-phonon U-processes. Hence, the transfer of phonon momentum from
the low-frequency modes w < w, must proceed in two steps (otherwise, a direct transfer
of phonon momentum from the low-frequency modes can be realised only through their
participation in much less feasible fourth and higher order U-processes). The first step
Is a N-process, which is always possible [79]. Such a N-process links the low-frequency
mode to the modes of frequency w, or higher. The second step is an U-process linking
the later intermediate-frequency modes (w = w.) to the high-frequency (zone-
boundary) modes. This implies that the low-frequency modes w < w, can reach
equilibrium only by these two steps, and that their effective relaxation time can be seen
as a superposition of the relaxation time for the N-processes which link the low-
frequency modes to the intermediate-frequency modes and the average relaxation time
for the U-processes (only possible if w = w.) [78, 80]. Meanwhile, the intermediate-
and high-frequency modes w = w, can reach equilibrium in one step, and their
relaxation time is just the relaxation time for the U-processes. Furthermore, one can
suppose that, because of the two steps, the relaxation of the low-frequency modes w <
w, (referred to as a slow relaxation process) should be separated in time from the one-
step relaxation of the intermediate- and high-frequency modes w = w, (referred to as a
fast relaxation process). Additionally, because w, is supposed to be small (w, is about 4
- 5 times less than wp, according to both the assumption attributed to Klemens [78, 80]
and the analysis of the simulation data presented here), the relative fraction of the
low-frequency modes w < w, itself can be seen as a very small quantity, of the order of
w3 /w} (it can be roughly estimated about 102 or even less). However, to reach
equilibrium the low-frequency modes w < w. need to interact with the intermediate-

and high-frequency modes w = w,, So that the total fraction of the phonon modes
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contributing towards the slow relaxation process (which is described by the second term
in Equation 5.1 (page 81)) may be comparable with the fraction of the phonon modes
contributing towards the fast relaxation process (which is described by the first term in
Equation 5.1 (page 81)).

In other words, the acoustic short- and long-range phonon modes are those
phonon modes that contribute towards the fast and slow relaxation processes,
respectively. According to the recently explored two-fluid nature of phonon heat
conduction in a monatomic lattice [81], the fluctuating microscopic heat current in a
given direction of a large enough local volume of a crystal lattice can be decomposed
into two parts, as:

J=]1+]2 (5.2)

where, J, and J, are the heat currents (in the same direction) due to the acoustic short-
and long-range phonon modes, respectively ((J) = 0, (J;) = 0 and (J,) = 0, where the
average is taken in thermal equilibrium on the time scale of t > t,). Furthermore, if one
assumes that there is no transfer of either energy or momentum (or it is strictly limited)
between these two thermal motions associated with the acoustic short- and long-range

phonon modes, then it follows that the HCACF should consist of two terms [81]:

where, C;; (t) = %(1(0)]1(1:)) and C;,(t) = %(](O)]z(t)) describe the contributions

into the HCACF decay due to the acoustic short- and long-range phonon modes,
respectively. Otherwise, the decomposition of the HCACF into these two contributions
would not be possible. A simple comparison of Equations 5.1 (page 81) and 5.3 shows
that:

Cyy,(t) = Arexp(—t/7q) cos(wct), (5.4)

Cy, () = Azexp(—t/1). (5.5)
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Thus, the frequency w, can be considered as the lower bound of the frequency range of
the acoustic short-range phonon modes. This means that the density of the acoustic short-
range phonon modes g, (w, T), goes to zero around w,, so that the frequency range of
the acoustic short-range phonon modes can be estimated as w, < w < wp. Meanwhile,
the density of the acoustic long-range phonon modes g, (w, T), is assumed to be spread
out over the whole frequency range 0 < w < wp. This also suggests that all low-
frequency phonons with w < w, belong to the acoustic long-range phonon modes.
Hence, the acoustic short-range phonon modes can be characterized as intermediate- and
high-frequency phonon modes with w = w, that reach equilibrium in one step by
directly undergoing a U-process (fast relaxation process). Consequently, the acoustic
long-range phonon modes include the low-frequency phonon modes with w < w, and
those intermediate- and high-frequency phonon modes which interact with the low-
frequency phonon modes to produce two-step relaxations, as suggested by Klemens
(slow relaxation process). Perhaps, the best way to view g;(w,T) and g,(w,T) is
through  the  probabilities p;(w,T) = g1(0,T)/g(w,T) and p,(w,T) =
92(w,T)/g(w, T) (where g(w,T) = g;(w,T) + g,(w,T) is the density of all the
phonon modes, so that p, (w, T) + p,(w, T) = 1) to find the phonon modes between w
and w + dw at a given temperature T among the acoustic short- and long-range phonon

modes respectively.
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Figure 5.1: The normalized HCACF averaged over the NPT, NVT and NVE ensembles of the
MD models of f.c.c. () Cu, (b) Al, (c) Nigawm1, (d) Nieamz and (e) Ag at different temperatures
(black solid line) and its fit by Equation 5.1 (blue dashed line).
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5.1 Thermal Conductivity Decomposition

In the framework of this model for HCACF, this study has demonstrated that the
thermal conductivity k can be represented as a sum of two contributions (see Equation
5.6) (Figure 5.2). In accordance with McGaughey and Kaviany [1, 2], the first part of
the thermal conductivity k; takes into account the acoustic short-range phonons that
have mean free paths equal to one half of their wavelength, while the second part of
the thermal conductivity k, takes into account the acoustic long-range phonons with

mean free paths longer than one half of their wavelength.

1 71
kph = VkBTZ <A1 1+ T%wg + A2T2> = k1 + kz, (56)
where:
. = VAT, 5.7)
LT kgT2(1 + 2w2)’ '
VAT,
k, = T2 (5.8)

The first term in Equation 5.6, given by Equation 5.7, is characterized by the average

relaxation time:

" ) 5.9
h 1+ t?w? (59)
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Furthermore, it can be seen in Figure 5.2, the temperature dependence of the phonon
thermal conductivity, k, of the MD models of f.c.c. Cu, Al, Nieam1, Nieam2 and Ag can
be well fitted by linear functions in different temperature ranges in the
double-logarithmic scale. The linear fits in Figure 5.2 show that the data varies
approximately as: (a) T~ at 40 - 200 K and T~1-3 at 300 - 1300 K, (b) T~11%at 100
- 500 K, and T~1*%at 500 - 1000 K, (c) T~%63at 100 - 500 K, and T~*25at 600 - 1700
K, (d) T~*2at 100 - 500 K, and T~%®%at 600 - 1700 K, and (e) T~*°at 40 - 200 K, and
T~1at 200 - 1200 K. These trends correlate well with classical phonon perturbation
theory (it takes into account the effect of anharmonicity in the atomic interactions to
describe the three-phonon scattering processes) which predicts that the lattice thermal
conductivity should be inversely proportional to temperature k,,~T " at sufficiently

high temperatures (according to some estimations above T, /4 [43]).

The data on thermal conductivity collected in this study are also in agreement with
the above mentioned calculations of the phonon thermal conductivity of f.c.c. Cu under
a large temperature gradient (using heat baths at 300 and 850 K at the ends of the
simulation cell) [9] with an older EAM potential [10]. In particular, the numerical value
of the thermal conductivity found in [9], 5.7 W/mK (which probably should be related
to the temperature 575 K at the middle of the simulation cell), is between the thermal
conductivities of 6.22 and 4.65 W/mK calculated in the present work at 500 and 600 K,
respectively.

As can be seen in Figure 5.2, at low temperatures k; < k, so that we have k =
k,. This means that at low temperatures, the second term in Equation 5.6, which is
related to the second stage of the HCACF relaxation, dominates and contains most of
the temperature dependence of the lattice thermal conductivity of the MD models of

f.c.c. Cu, Al, Nieam1, Nieamz and Ag.
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Figure 5.2: Double-logarithmic plot of the temperature dependence of the thermal conductivity,
k,n, of the MD models of f.c.c. (a) Cu, (b) Al, (c) Nieaws, (d) Nieam2 and (e) Ag calculated by
using Equation 5.6 at different temperatures (diamonds) (see Table 3.1). The solid lines show
the linear fits of the data in the different temperature ranges. The upward facing triangles (k)
and downward facing triangles (k,) show the decompositions of the thermal conductivity given
by Equations 5.7 and 5.8.

5.2 Time Constant

Figure 5.3 illustrates the interrelation between all the discussed time constants t,, T, and
71 for the MD models of f.c.c. Cu, Al, Nieam1, Nieam2 and Ag. Also in this figure is
shown the time constant 7, = m/w, (one half of the period of oscillations with
characteristic frequency w.) which according to Einstein [82] is the minimum time
needed for a vibrational mode with frequency w,. to lose or gain thermal energy, i.e., to

undergo either a N-process or an U-process. It can be seen in Figure 5.3 that, at low
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temperatures, T, approaches 7.. This means that the apparent contribution of the low
frequency phonon modes to t, in the case w. — 0 should be the most significant at low
temperatures. As a result, the difference between 7, and t; , due to the cut-off of the
density of the acoustic short-range phonon modes at w,, is the most remarkable at low
temperatures. In contrast, at high temperatures 7; < t., so that the cut-off of the density
of the acoustic short-range phonon modes at w,. leads to a smaller difference between 7,

and 7. In addition, it is important to point out that 7; << 7, at all temperatures.
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Figure 5.3: Double-logarithmic plots of the temperature dependences of the time constants 7,
(upward facing solid triangle), 7, (downward facing solid triangle), 7; (upward facing open
triangle) and 7, = m/w. (open diamonds) calculated within the framework of the HCACF
decomposition given by Equation 5.6 as applied to the MD models of f.c.c. (a) Cu, (b) Al, (c)
Nigami, (d) Nieamz and (e) Ag.

5.3 Analysis of the Phonon Thermal Conductivity Decomposition

In general, the lattice thermal conductivity of an isotropic solid can be derived from the

Boltzmann transport equation in the form [17]:

1 @p(M
k= f c(w, T)VE (0, T)t" (@, T)g(w, T)dw, (5.10)
0
where:
hw
hw? P\, T
C(a), T) _ (kBT) (511)

T exp (R - )

is the phonon-specific heat, v;(w,T) is the phonon group velocity, 7*(w,T) is the
phonon relaxation time, g(w, T)dw is the number of phonon modes between w and w +
dw per unit volume of crystal (g(w, T) is the density of phonon modes) and w, (T) is
the Debye (maximum) frequency, such that there are in total 3N distinguishable phonon
modes (N is the number of atoms in the crystal):

wp(T)
— = f 9(w,T)dw (5.12)
0
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It should be noted that for every given pair of w and T, the
product v;2(w, T)t*(w, T)g(w, T) inside the integral in Equation 5.10 should be
considered as an appropriately weighted average over the different reciprocal lattice
directions and the different phonon polarizations (one longitudinal and two transverse).

Next, using the concept described above on the two-stage decay of the HCACF
of a crystal with a monatomic unit cell, the general expression for the lattice thermal
conductivity given by Equation 5.10 can be decomposed (by way of analogy with
Equation 5.6) into two contributions k; and k, associated with the acoustic short- and

long-range phonon modes, respectively:

1 @n(
b= f c(@, TIVE (@, T)T} (@, T) g1 (@, T)dw, (5.13)
0
wp(T)
ke =3 f c(@, TIE(w, T)T5 (@, T) g2 (@, Tdo, G14)
0

where, 7i(w,T) and t;(w,T) are the relaxation times of the acoustic short- and
long-range phonon modes, respectively, while g;(w,T)dw and g,(w,T)dw are the
numbers of the acoustic short- and long-range phonon modes, respectively, between
w and w + dw per unit volume of crystal (g, (w, T) and g, (w, T) are the partial densities
of the acoustic short- and long-range phonon modes, respectively). By this definition, it

follows that:

T*(O), T)g((l), T) = TI(O), T)gl ((1), T) + T; (a), T)gZ (a), T)' (515)

Thus, there are in total N; and N, acoustic short- and long-range phonon modes,

respectively (N; + N, = N):

wp(T)
e R (5.17)
0
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wp(T)
— = J g2 (w,Tdw, (5.18)
0

As a result, the average relaxation times of the acoustic short- and long-range

phonon modes can be defined as:

vV rep(
T = — 71 (0, T)g1(w, T)dw, (5.19)
Ny Jy
VvV ep(
Ty = —j 75(w, T)g2(w, T)dw, (5.20)
N, J,

so that the average relaxation time of all the phonon modes is given by:

wp(T)
T =fiti + o1, = ﬁj " (w,T)g(w, T)dw, (5.21)
0

where f; = N;/3N and f, = N,/3N are the fractions of the acoustic short- and
long-range phonon modes, respectively (f; + f; = 1). Moreover, the partial heat

capacities of the acoustic short- and long-range phonon modes, respectively, are:

wp(T)
C, = f c(w,T)g:(w, T)dw, (5.22)
0
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wp(T)
C, = J- c(w,T)g,(w, T)dw, (5.23)
0

so that the total heat capacity of all the phonon modes is given by:

wp(T)
C=C+C, = j c(w,Tg(w,T)dw, (5.24)

0

It should also be noted that in the decomposition of the lattice thermal
conductivity given by Equations 5.13 and 5.14, it was assumed that the phonon group
velocity v (w, T) depends mainly on the frequency, while it is much less sensitive to
the type (short or long range) of the phonon modes. Hence, it is treated identically for

both the short- and long-range phonon modes.

Finally, some remarks on the partial densities g,(w,T) and g,(w,T) of the
acoustic short- and long-range phonon modes are provided. As discussed in the previous
section, the density of the acoustic short-range phonon modes g, (w, T) is supposed to
go to zero around w,, so that the actual frequency range of the acoustic short-range
phonon modes in Equations 5.13, 5.17, 5.19 and 5.22 can be estimated as w, S w < wp.
The densities of the acoustic long-range phonon modes g,(w,T) are supposed to be
spread out over the whole frequency range 0 < w < wp, so that g,(w,T) = g(w,T)
atw S w.. Nonetheless, the actual fraction of the low-frequency phonon modes with
w S w, relative to the total number of all phonon modes is expected to be a very small
quantity, in the order of about 1072 or even less, as pointed out in Chapter 1. Thus, the
main contributions to both the g, (w, T) and the g, (w, T) are supposed to come from the
intermediate- and high-frequency phonon modes with w > w., so that the partial
fractions f; and f, of the acoustic short- and long-range phonon modes can be expected

to be quantities of the same order of magnitude.

At high temperatures T > Tp, when all the phonon modes are excited and the

phonon specific heat, given by Equation 5.17, is nearly the same for all the phonon
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modes and can be approximated by the classical value of kgz. Hence, for high

temperatures T > Tp, Equations 5.13 and 5.14 can be rewritten as:

kg wp(T)
oy =2 f v (w, T)7; (@, T) g1 (@, T)dw, (5.25)
0
kg wp(T)
ko == f v (0,773 (0, T) g2 (w, T)dw, (5.26)
0

while from Equation 5.17, 5.18 and 5.22 — 5.24 it follows that:

Cl = (plc, (5.27)

Cz = (po, (528)

where ¢, and ¢, are the relative contributions of the acoustic short- and long-range
phonon modes to the lattice heat capacity, respectively (¢, + ¢, = 1), and C is the heat

capacity and also:

3Nkg

is the classical lattice heat capacity, known as the Dulong and Petit value. Finally, the
average phonon velocity of the acoustic short- and long-range phonon modes is defined

as:

v
NiT,

wp(T)
v? = ] v% (0, T)7i (@, T)gs (@, T)daw, (5.30)
0
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14 wp(T)
vy = _*j vé (0, T)15 (0, T) gy (w, T)dw, (5.31)
N,73 Jo

so that the average phonon velocities of all the phonon modes is given by:

—% —%
T 5 ‘L'_z _ |74
27+ 3NT*

2 _ 21
v —<P1V1F+<P2V

wp(T)
J- vé (w0, T)t" (0, T)g(w, T)dw. (5.32)

Thus, Equations 5.25 and 5.26 can be rewritten in the form of simple kinetic

formulas:

1

kl = §C1v12f;, (5.33)
1

kz S §sz22f;. (5.34’)

Now, by direct comparison of Equations 5.33 and 5.34 with the results of the
classical MD simulations given by Equations 5.7 — 5.9, one can obtain the following

relations:

L (5.35)
31 T T2 '

—x% I 71

T1=T1 = m (536)
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1 C,v2 = 4 5.37
32Y2 Ty T2 (5:37)
T =1 (5.38)

Hence, by combining Equations 5.35 and 5.36, and taking into account Equations
5.1 (page 81) and 5.29, one can find that:

P1V§ + V5 = v}, (5.39)

where:

1 [A+4, 1 J?)

kgT N(L) kgT 3N(L
Cpp Cpp

v, = (5.40)

)

can be described as the average phonon velocity determined from the second-order

fluctuations of the heat current vector. Then, it follows that:

V= _17], (54‘1)

v, = 8_217], (54‘2)
P2
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where:

= , 5.43
1 A1 + Az ( )
A,
_ , 5.44
2 A1 + Az ( )

(g, + &, =1). From Equations 5.41 and 5.42, the following relation can also be

obtained:

a8 _1 (5.45)
v v v '

At this point, it was assumed that the average phonon velocities of the acoustic
short- and long-range phonon modes given by Equations 5.30 and 5.31 may
approximately be considered as equal to each other v; = v,. Indeed, the fraction of the
low-frequency phonon modes w < w., which have higher velocities than other modes,
was very small, as discussed above. Consequently, the contribution of the low-frequency
phonon modes w < w, to v, was also expected to be small. Meanwhile, the main
contributions from the intermediate- and high-frequency phonon modes w > w, to v,
and v, can be expected to be rather similar. Then, from Equations 5.41 and 5.42, it
follows that the fractions (or partial heat capacities) of the acoustic short- and long-range
phonon modes can be estimated as f; = &; and f, = &,, respectively. Thus, the MD
calculations of the HCACF of a crystal with a monatomic unit cell, besides the phonon
thermal conductivity and its decomposition into k, and k-, also allow for the numerical
decomposition of k; and k., , according to the simple kinetic formulas (see Equations
5.33 and 5.34), as products consisting of the heat capacity and the average relaxation
time of the considered phonon modes as well as the square of the average phonon

velocity.
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Figure 5.4 shows the average phonon velocity v; of the MD models of f.c.c. Cu,
Al, Nieam1, Nieam2 and Ag calculated according to Equation 5.40 as a function of the
temperature in the temperature range that is above the Debye temperature of the models,
as mentioned in Table 3.5. It can be seen in Figure 5.4 that, over the temperature ranges
considered, the average phonon velocity changes with temperature in good agreement
with the linear law (see Table 5.1):

vy = vy +a,T, (5.46)

Table 5.1 shows the details of the average phonon velocities at zero temperature, v, of
metals that are in good agreement with the average speed of sound by using zero
temperature elastic constants of the MD models of f.c.c. Cu, Al, Nieam1, Nieam2 and Ag
(see Table 3.5).
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Figure 5.4: Temperature dependences of the average phonon velocities for the MD models of
f.c.c. (@) Cu, (b) Al, (c) Nieami, (d) Nieam2 and (e) Ag calculated according to Equation 5.40 at
different temperature ranges above Tp. The lines show the linear fit of the data according to
Equation 5.46.

Table 5.1: Details of the linear fits of the average phonon velocities (v,, a;,,), Debye frequencies

(wp) and Debye temperatures (Tj) at zero temperature.

-4
Metals Vo (kTm) a, (X %) wp (THz) Tp (K)
Cu 2.72 4.64 46.7 356
Al 3.68 8.64 56.2 429
Nieam1 3.23 4.54 56.7 433
Nieam2 3.15 1.98 55.4 423
Ag 2.16 4.39 32.7 250

Figure 5.5 shows the temperature dependences of the total lattice heat capacity
C as well as the partial heat capacities C; = CA;/(A; + A;) (upward facing triangles)
and C, = CA,/(A; + A,) (downward facing triangles) of the acoustic short range
phonon and acoustic long-range phonon modes, respectively, calculated for the MD
models of f.c.c. Cu, Al, Nieam1, Nieamz2 and Ag over temperature ranges more than the
Debye temperature (see Table 3.5). Firstly, the classical value of the lattice heat capacity
at a constant volume in temperature ranges of more than the Debye temperature was

verified:

O0E

1
C=c, = V<ﬁ>v’ (5.47)

where E is the internal energy of the model. For each temperature considered, and their
respective zero-pressure volumes, this was done by linear approximations of the internal
energy of the model at five nearby temperatures separated by a 5 K increment at the
fixed volume. It can be seen in Figure 5.5 that the data obtained for the temperature

ranges considered can be approximated with very good accuracy by the classical

value Cpp. This reassured us in the use of the classical value Cpp in the calculation (in
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particular in Equation 5.40). It can be seen in Figure 5.5 that C; dominates the whole
temperature range. However, with decreasing temperatures the difference between C;
and C, diminishes. Thus, one can conclude that at high temperatures the average
contribution of the direct U-processes (the fast relaxation process) in restoring the
equilibrium distribution of the high- and intermediate-frequency phonon modes w = w,,
i.e., the fraction of the acoustic short range phonon modes, prevails over the slow
relaxation process, i.e., the fraction of the acoustic long-range phonon modes. This leads
to the conclusion that the contribution of the acoustic short range phonon modes to the
lattice thermal conductivity is notable at high temperatures and cannot be neglected (see
Figure 5.2), despite the considerably shorter average relaxation time 7; of the acoustic
short range phonon modes in comparison to the average relaxation time 7, of the
acoustic long-range phonon modes (see Figure 5.3). The decomposition on the acoustic
short- and long-range phonon modes is probably also the reason that the lattice thermal
conductivity varies more rapidly than the T~ law at T > Tp. In addition, it was noted
that in principle, it can be expected that C, might be close to zero at some very high
temperatures which is, however, likely to be always higher than the melting temperature
Tn- Although such a state of phonon gas, consisting mainly of the acoustic short range
phonon modes, is hard to realise in a crystal lattice, it would be of great interest for the
development of advanced energy conversion devices that utilize the thermoelectric
effect [8].
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Figure 5.5: Temperature dependences of the partial heat capacities C; (upward facing triangles)
and C, (downward facing triangles) of the acoustic short- and long-range phonon modes for the
MD models of f.c.c. (&) Cu, (b) Al, (c) Nigams, (d) Nieam2 and (e) Ag over temperature ranges of

more than the Debye temperature. Diamonds show the calculated lattice heat capacity C = Cy,.

At low temperatures T < Tp, not all of the phonon modes will be excited in the
quantum crystal system. In this case, the classical approximation for the phonon specific
heat can no longer be used. However, according to the MD results at low temperatures,

one can note in Figure 5.2 that k; « k,, so that we have [1-3]:

1 wp(T)
k~kp =7 f c(w, TYVE (0, T)7 (0, T) g2 (w, T)dow, (5.48)
0
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where, C(w, T) is the phonon heat capacity (see Equation 5.11), v, (w, T) is the phonon
group velocity, 5 (w, T) is the relaxation time of the acoustic long-range phonon modes,
g2 (w, T)dw is the number of the acoustic long-range phonon modes between w and w +
dw per unit volume of crystal (g, (w, T) is the density of the acoustic long-range phonon
modes), and wp, (T) is the Debye frequency. At low temperatures, the contributions of
the acoustic short range phonon modes can be neglected because their average relaxation
time 77 = 17 is approximately one to two orders of magnitude shorter than 75 = 7, (see
Figure 5.3).

As the temperature goes below Tp, the fraction of excited phonon modes in a real
crystal and, consequently, the lattice heat capacity C, start to decrease. It was assumed
that the decrease of C should first of all be determined by the decrease of the heat
capacity C; of the acoustic short range phonon modes, and only then, at sufficiently low
temperatures, where C; « C, by a decrease of the heat capacity C, of the acoustic long-
range phonon modes. Then, it is reasonable to surmise that classical MD simulations
could be used to estimate the lattice thermal conductivity (limited by the phonon-phonon
interactions) of a real quantum crystal at temperatures T < T, if the two following

conditions were to be satisfied simultaneously: (i) all the low-frequency phonon modes

hwc
kp

with w < w, must be entirely excited, i.e., T = T, (T, = —), and (ii) the total number

of excited phonon modes must be sufficient to produce a two-step relaxation as
suggested by Klemens [78, 80] (slow relaxation process), i.e., C, < C. Indeed, the
freezing out of some fraction of the intermediate- and high-frequency phonon modes in
a real crystal at temperatures below T, would produce, in comparison with the classical
MD model, an extra decrease of C; and, consequently, k,, but, even without it, k, is
negligible compare to k, at T < T}, in the classical MD model. Therefore, the thermal
transport properties limited by the phonon-phonon interactions in both a real crystal and
its classical MD model at T, S T < Tp should be determined by nearly the same

contribution of the acoustic long-range phonon modes.

As a first approximation, let us neglect the frequency dependency of v (w, T), SO
that its average value v; can be used. Then, over the temperature range T, S T < T, we

can rewrite Equation 5.48 as:
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1 wp(T)
12 v
kpn = ky ~ 3 ZUeTy + ?q j c(w, T)vé(w, T)t5(w, T) gy (w, T)dw. (5.49)
w(T)
where:
w(T)
3f,N
C, = kg f 92(w, T)dw =kg v (5.50)
0

is the heat capacity of the acoustic long-range phonon modes with w < w, (c(w,T) =
kgforT = T.and w < w,), f, is the fraction of the acoustic long-range phonon modes

with w S w,, and:

wc(T)
V

75 :Wf 5 (w, T)g2(w, T)dw (5.51)
0

is the average relaxation time of the acoustic long-range phonon modes with w < w,. It
also should be recalled that according to the model description, all the low-frequency
phonons with w < w. belong to the acoustic long-range phonon modes, so that
92w, T) = g(w,T) at w S w. (Where g(w, T) is the total density of all the phonon
modes). Moreover, it is reasonable to assume that the average relaxation time, 75, of the
acoustic long-range phonon modes is mostly defined by the average relaxation time, 75,
of the acoustic long-range phonon modes with w < w,, because specifically, these
phonon modes intrinsically originate the two step slow relaxation process, as described
above. As a result, the phonon relaxation time, 75 (w, T), of the acoustic long-range
phonon modes with w = w, should be considered as being closely coupled to 75" = 75.
For this reason, we can neglect the frequency dependency of t;(w,T) compared to

c(w, T) in the second term on the right hand side of Equation 5.49, so that the average
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relaxation time 75 can be used to replace 75 (w, T). Thus, Equation 5.49 can be evaluated

to obtain a simple kinetic formula:

I, .2 =% 1 .2 =% 1 2 =%
kpn = ky = 32T + §Cz Vit = §C2vqrz, (5.52)
where:
wp(T)
C;) = J- c(w,T)g,(w, T)dw (5.53)
wc(T)

is the heat capacity of the acoustic long-range phonon modes with w = w,, so that:

C, =C,+Cy. (5.54)

The simple kinetic formula given by Equation 5.52 allows us to evaluate C, in the
temperature range T, < T < T, and, hence, compare it to C by employing the Debye
approximation [17, 20, 21] for the heat capacity of a crystal, so that the feasibility of the
simultaneous satisfaction of the two above mentioned conditions can be directly verified
in a self-consistent manner. The total phonon heat capacity of a crystal can be estimated
as the Debye heat capacity [17, 20, 21]:

Tp

3 T x4ex
j — __dx. (5.55)
0
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Hence, a classical description of the thermal transport properties of the acoustic
long-range phonon modes in the temperature range T, < T < Tp can be considered if
C, = 3k2/v]2f§ (v, can be estimated by linear extrapolation according to Equation 5.46,
and 75 can be taken as approximately equal to t,), estimated from Equation 5.52, is less
than the Debye heat capacity Cj,. Figure 5.6 shows the temperature dependences of both
C, (including its high temperature values) and C, (at T < Tp). It can be seen that Cp
reaches C, at a temperature of around 90 K for the f.c.c. Cu model (see Figure 5.6(a)),
100 K for the f.c.c. Al, Nieam1, Nieam2 models (see Figure 5.6(b), 5.6(c) and 5.6(d),
respectively) and 60 K for the f.c.c. Ag model (see Figure 5.6(e)). Meanwhile, the fitting
of the HCACFs of the MD models of f.c.c. Cu, Al, Nieam1, Nieam2 and Ag at the
mentioned temperatures gave the characteristic frequency (w,) of approximately 11.5,

17.4,12.6, 14.1 and 8.02 THz, respectively. The values of the characteristic temperature

(T, = hk“)f) of the MD models of f.c.c. of Cu, Al, Nieam1, Nieam2 and Ag were around
B

88, 133, 96, 108 and 61 K for those frequencies were in excellent agreement with the
mentioned temperatures (90 K for f.c.c. Cu model, 100 K for the f.c.c. Al, Nigawma,
Nieam2 models and 60 K for the f.c.c. Ag model) found from the condition C, = Cp, (See
Figure 5.6). Consequently, one can conclude that for the MD models of f.c.c. Cu, Al,
Nieamz, Nieam2 and Ag the temperature range, where both abovementioned conditions
are satisfied simultaneously, is T, S T < Tp, with T, estimated to be around one quarter
of Tp.
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Figure 5.6: Heat capacity of the acoustic long-range phonon modes (downward facing triangles)
calculated as C, = 3»!(2/17]2 T, for the MD models of f.c.c. (a) Cu, (b) Al, (c) NIEAML1, (d)
NIEAM2 and (e) Ag over a wide temperature range (see Table 3.1) using the classical MD
simulation data versus the Debye heat capacity Cp (solid line). The solid line shows Cp as a
function of the temperature calculated according to Equation 5.55 by using the Debye
temperature of 356, 429, 433, 423 and 250 K, respectively (estimated for 2.72, 3.68, 3.23, 3.15
and 2.16 km/s, respectively).

Thus, it has been have demonstrated that despite the freezing out of some fraction
of the intermediate- and high-frequency phonon modes at temperatures below the Debye
temperature, a classical description of the phonon thermal transport properties in the MD
models of f.c.c. Cu, Al, Nieam1, Nieam2 and Ag can be used down to around one quarter
of the Debye temperature. This is because the acoustic long-range phonon modes, which
are the main heat carriers responsible for the phonon thermal transport at low
temperatures, are active down to around one quarter of the Debye temperature, and only

at lower temperatures do they start to freeze out.
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At lower temperatures, T < T,, one can expect that the freezing out of the acoustic
long-range phonon modes will result in the interactions among the acoustic long-range
phonon modes rapidly becoming less effective in restricting their men-free path.
Therefore, the quantum effects on the populations of the acoustic long-range phonons at
temperatures T < T, will affect, in Equation 5.48, not only the heat capacity but also
their relaxation times. Thus, at temperatures T < T, the classical MD simulations data
are unlikely to provide valuable insight into the prediction of the phonon thermal

transport properties.
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Chapter 6: Spectral Representation

In this chapter, it is shown that the information about the parameters of the analytical
model for the HCACF given by Equation 5.1 (page 81) (and consequently the lattice
thermal conductivity) can, in principle, be obtained experimentally by scattering or
absorption measurements. In particular, the power spectrum of the heat flux fluctuations
and the spectrum of the power of the heat dissipation in the thermal equilibrium in a
crystal with monatomic lattice are analysed. The theoretical ground for the spectral
representation of the HCACF, on the basis of Equation 5.1 (page 81), was developed by
Dr Alexander Evteev?*. The peculiarities of the power spectrums of the heat flux
fluctuations predicted below for the f.c.c. metals can, in principle, be observed in a
scattering experiment with no gradients imposed on the studied crystal if a proper
resolution of the frequency range of approximately 1 — 20 THz is accessible.

Although in the previous section it has been shown that the lattice thermal
conductivity, ky,, at T < Tp, is dominated by the contributions of the acoustic long-
range phonon modes (k,) and, consequently, the temperature range for the MD
predictions of k,, can be extended down until C, < Cj, (i.e., down to T;), the power
spectra discussed in this section are supposed to be spread over the whole frequency
range from 0 to wp. Therefore, certain corrections to the MD predictions need to be
involved in the high-frequency range at T < Tp. For this reason, consideration is limited,
at the present stage, to only the power spectra of the equilibrium fluctuations at T > Tp,.

At thermal equilibrium, let us consider a fluctuating heat flux J associated with a
spontaneously fluctuating thermodynamic force X which originates from a

spontaneously fluctuating temperature gradient:
X = ! V1 6.1
"' * ( * )

The linear response of J on X can therefore be written in the form [3]:

24E.V. Levchenko, A.V. Evteev, L. Momenzadeh, I.V. Belova, and G.E. Murch. Phonon-Mediated Heat
Dissipation in a Monatomic Lattice: Case Study on Ni. Philosophical Magazine, 2015. 95(32): p. 3640-
3673.

A.V. Evteev, E.V. Levchenko, L. Momenzadeh, I.V. Belova, and G.E. Murch, Insight into Lattice
Thermal Impedance via Equilibrium Molecular Dynamics: Case Study on Al. Philosophical Magazine,
2015, DOI:10.1080/14786435.2016.1143569.
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e

V
IO =17 j ¢, ()X (¢ — t)dt, (6.2)
0
where:

1
Cy(t) = 3 J(©)J0)) = ()] (0)) (6.3)

is the HCACF, and, for simplicity, the vector notation is dropped. It is straightforward
to see that the Fourier transformation of Equation 6.2 into the frequency domain can be

found as:
J(w) =TZ " (w)X(w), (6.4)
where:
j@= [ @eerr, 65)
X(w) = fX(t)ei“’tdt, (6.6)

— 00

are the Fourier transforms of the fluctuating J(t) and X(t), and Z(w) is the thermal

impedance which can be defined as:

[oe}

f C(Dettde. (6.7)

%4
Z Y (w) = P
0

The lattice thermal impedance Z(w) = R(w) + iY(w) due to the phonon-phonon
scattering processes, which is related to the HCACF given by Equation 5.1 (page 81),

can be presented as:
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1 R(w) |4 AT, ATy 24,1,
ReZ ' (w) = > = > ) -+ |
|Z(w)] 2kgT? |1+ (0 + we)?t; 14+ (w0 —w)?t; 14+ w?ts
(6.8)
-Y(w |4 At (w+ w At (w—w 24,72 w
ImZ‘l(a)) — ( )2: 2[ 1 1( ;)2_}_ 1 1( (2:)2+ 2 22 2]-
|Z(w)|?  2kgT? |1+ (0 + w)?t; 14+ (0w —we)?ty 1+ w?Ts

(6.9)

where, R(w) = ReZ(w) and Y(w) = ImY (w) is the lattice thermal resistance and
reactance, respectively, while |Z(w)|? = Z(w)Z*(w) = R*(w) + Y*(w) (Z*(w) =
R(w) — iY(w) is the complex conjugate to Z(w)). Also, it was noted that from the
definition of Z(w) given by Equation 6.7 it follows that Z(—w) = Z*(w), i.e., R(w) =
R(—w) and Y(w) =-Y(—w) are even and odd functions of w, respectively.
Furthermore, the lattice thermal impedance can be decomposed into the contributions
Z,(w) and Z,(w) associated with the acoustic short and long-range phonon modes,

respectively, as:

r 1 (6.10)
Z(w) Zi(w)  Zy(w) '
where:
Zi(w) = R{(w) + iY; (w), (6.11)
Zz(a)) = Rz(a)) + in(a)), (6.12)
so that:
Ri(0) = ReZy (@) = L |1 4 @1 (6.13)
1@ = SN _k1T1 1+a)2Tf' .
V() = mz; (@) = - 221 weti 6.14
1\0) = M4 le) = ky 1+ w?t? (614)
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are the thermal resistance and reactance of the acoustic short range phonon modes,

respectively, while:

R,(w) = ReZ,(w) = kl' (6.15)
2

Y,(w) = ImZ,(w) = —% (6.16)
2

are the thermal resistance and reactance of the acoustic long-range phonon modes,
respectively. Similar to Z(w), it can be seen that Z;(—w) = Z;(w) and Z,(—w) =
Z5(w), i.e., Ry(w) = R{(—w) and R,(w) = R,(—w) are even functions of w while
Y (w) = -Y;(—w) and Y, (w) = —Y,(—w) are odd functions of w.

First, Equation 6.10 implies that for each frequency w the total impedance Z(w)
is a parallel combination of the two impedances Z; (w) and Z,(w) associated with the
acoustic short- and long-range phonon modes respectively. This means that the

following relations should be satisfied:

J(@)Z(w) = 1(@)Z1(0) = J2(0)Zz(w) = TX(w), (6.17)

where, J; (w) and J, (o) (J(w) = J;(w) + J,(w)) are the Fourier transforms of J, (t) and
Jo(t) (see also Equations 6.4 and 6.5). Next, according to the thermodynamics of
irreversible processes, at sufficiently small departures from thermodynamic equilibrium
the rate of entropy production per unit volume, @, can be expressed in this case as [83-
86]:

To = JX. (6.18)
Assuming the isotropy of J and X, taking the inverse Fourier transform of Equations 6.5

and 6.6, and using Equation 6.4, the averaged over time power dissipation in a crystal

lattice due to the spontaneously fluctuating thermodynamic force X can be expressed as:
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Power = (To) = 3(J(t)X(t)) = (2 )2T f f(](w)](w’))Z(a)’)e‘l(wa ‘tdwdw'.

—00 —00

(6.19)

According to the general theory of fluctuation [83], the averaged over time product

(J(w)](w")) can be related to the power spectrum S;(w) of J(t) as:

J(@)J (") = 2nS;(w)6(w + "), (6.20)

where, 6 (w + ") is the Dirac delta function. This definition suggests that S;(w) is the
Fourier transform of the HCACF Cj;(¢t) (as any time autocorrelation function, C;,(t)
must be an even function of time C;; (t) = C;;(—t), so that strictly speaking, the absolute
value of time |¢t| should appear instead of t in the first and second exponents of Equation

5.1 (page 81)) and, consequently, is an even function of w:

‘ . ‘ . 2kgT?ReZ Y (w) 2ksT?R(w)
— lwt — lwt — —
5 (w) = j ¢, (D)ei@tdt = 2Rej ¢, (D)ei@tdt = - =
—00 0
(6.21)
Hence, by Equations 6.19 and 6.20 we have:
3 [oe]
Power = (To) = 5T Sj(w)Z*(w)dw = —f Sj(w)R(w)dw. (6.22)

—00

Instead of S;(w), one can alternatively use the power spectra S, (w) of /;(t), S, (w) of

J(t) or Sy(w) of X(t), which are defined similarly to Equation 6.20, along with the
relations given by Equation 6.17 to obtain from Equation 6.19 the other expressions for

the spectrum of the power dissipation (the integrand in Equation 6.22):
3
Spower(®) = ﬁSJ(M)R(w); (6.23)
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so that the following relations between the power spectra can be found:

2ksT2R(w)

Sj()IZ(@)I? = Sp, ()12, (w)|? = Sp, () |Zz(w)|? = TSy (w) = 7

(6.24)

It is important to point out that the relations given by Equation 6.24 present different
forms of the fluctuation-dissipation theorem [83, 87] for the case considered of heat
dissipation due to the phonon-phonon scattering processes. The power spectra S;(w),
Sy, (w), S;,(w) and Sy (w) reveal the squared amplitude (intensity, strength or power) of
the fluctuations of J(t), J,(t), J,(t) and X (t), respectively, at a given frequency w.
Figure 6.1 shows the normalized power spectrum VSy(w)/2kg = R(w) (in units
of thermal resistance) of X(t) calculated according to Equation 6.24. It can be seen in
Figure 6.1 that in contrast to the simplest kinetic theory which essentially assumes a
single exponential stage of the heat flux relaxation [41], the power spectrum of the
randomly fluctuating thermodynamic force is not just a constant equal to the reverse of
the lattice thermal conductivity (as an analogy, note that in this case R,(w) = k3! =
const for all frequencies). It has a peak of an asymmetrical shape with a maximum
located at wg somewhat below w,.. Hence, one can conclude that at frequencies near the
maximum location the perturbations of the equilibrium phonon distribution due to the

spontaneously fluctuating thermodynamic force X (t) should be the most intensive.
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Normalized Power Spectrum (mK/W)
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Figure 6.1: Normalized power spectrum VSy(w)/2ky = R(w) of the spontaneously
fluctuating thermodynamic force X (t) in thermal equilibrium at different temperatures above Tj,
for the MD maodels of f.c.c. (a) Cu, (b) Al, (¢) Nigawmi, (d) Nieamz and (e) Ag predicted on the

basis of the analytical model for the heat current autocorrelation function given by Equation 5.1.
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Figure 6.2 shows the normalized power spectra VS;(w)/2kgT? =
R(w)/IZ()I?, VS (w)/2kgT? = R(w)/1Z;(w)|> and VS, (w)/2kgT? =
R(w)/|Z,(w)|? (in units of thermal conductivity) of J(t), J;(t) and J,(t) calculated
according to Equation 6.24. Meanwhile, Figure 6.3 shows the frequency dependences
of the magnitude of the impedances |Z(w)|, |Z;(w)| and |Z,(w)|, along with the
resistances R,(w) and R,(w). The magnitude of the impedances determines the

responses of J(t), J;(t) and J,(t) on X(t) at a given frequency w, so that:

Sj(w)
T2Sx(w)

Sh (w)
T2Sx(w)

S]z (w)
T2Sx(w)

=1Z(o)™ = 1Zy ()7, =1Zy(0)I7!. (625)
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fluxes J (1), J1(t) and J,(t), respectively, at different temperatures above T}, for the MD models
of f.c.c. () Cu, (b) Al, (c) Nigam1, (d) Nieamz and (e) Ag predicted on the basis of the analytical

model for the heat current autocorrelation function given by Equation 5.1.

(blue dash dotted line) of the equilibrium fluctuations of the heat
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Figure 6.3: Magnitude of the impedances |Z(w)]| (solid line), |Z; (w)| (thick blue dashed line)
and |Z,(w)| (thick blue dotted line) along with the resistances R; (w) (thin dashed line) and
R, (w) (thin dotted line) at different temperatures above Ty, for the MD models of f.c.c. (a) Cu,
(b) Al, (c) Nigam1, (d) Nieam2 and (e) Ag predicted on the basis of the analytical model for the

heat current autocorrelation function given by Equation 5.1.
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As can be seen in Figure 6.2, at very low frequencies, when w « ;! (for example,
in the f.c.c. Cu, ;1 was approximately 0.6 THz at 400 K (see Table 6.1 for more
details)), the amplitude of the fluctuations of J(t) decreased only very slightly from their
maximum values as the frequency increased from w = 0. In this frequency range, the
amplitude of the fluctuations of J(t) is mainly determined by the scattering of the
acoustic long-range phonon modes. It can be seen in Figures 6.1 — 6.3 that, at w < 71,
the responses can be estimated as |Z(w)|™! = R} (w) = k, |Z;(0)|™! = R{ Y (w) =
ki, and |Z,(w)|™! = R;Y(w) = k,. Atw > 151, the response |Z,(w)|™! becomes
practically independent of the relaxation time (i.e., purely reactive) so that |Z,(w)|™! =
|Y,(w)| ™" = k,/wT, = C,vf/3w. As a result, the temperature dependence of the
response |Z,(w)|™! at w > ;! is basically controlled by the temperature dependence
of the product C,v}.

The impedance |Z; (w)| of the acoustic short-range phonon modes has a minimum
at a frequency wgq, which is slightly above w.. (see Figure 6.3). This frequency w,; can
be defined as the undamped resonance frequency of the heat flux J;(t) driven by
hypothetical external periodic temperature perturbations (i.e., this frequency may also
be called the driven resonance frequency). Furthermore, it can be noted in Figure 6.2
that S; (w) has a maximum at a frequency wq;, Which is located between wg and wy;.
The frequency wq, at the location of the maximum on S; (w) determines the highest
amplitude of the fluctuation of the heat flux J;(t) at thermal equilibrium (i.e., the
response on X(t)). As a result, the frequency wq; can be defined as the damped
resonance frequency of the heat flux J;(t). It is also important to point out that the
locations of the minimum of |Z,(w)| and the maximum of S} (w) of the acoustic long-
range phonon modes coincided with each other, so that w,, = wgq, = 0. Thus,
considering that the cut-off of the density of the acoustic long-range phonon modes is at
the origin, the matching of wg; and w, is an additional very important piece of evidence
of the fact that the cut-off of the density of the acoustic short-range phonon modes occurs
in the vicinity of w.. In other words, between the lowest energy level of the acoustic
short-range phonon modes and the origin there is an energy gap of the order of ~Aw,
(or ~kgT.). Figure 6.4 shows the temperature dependences of the
frequencies w., wg, wy1, and wy;. Inthis figure, for comparitive reasons, the dataat T <

Tp is included. Indeed, it is interesting to note that, at high temperatures, w. and w4, are
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very well matched with w, = wg; (strong anharmonic effects), while at low

temperatures w,. tended to approach wy, (quasi-harmonic vibrations).
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Figure 6.4: Temperature dependences of the characteristic frequencies w. (circles), wg
(diamonds), wg; (solid downward facing triangles), wq; (squares), and wgy, =
wey 1 — (wet1)™% (upward facing triangles) for the MD models of f.c.c. (a) Cu, (b) Al, (c)
Nigam1, (d) Nieamz and (e) Ag in a wide temperature range (see Table 3.1). Open downward
facing triangles show an estimation of wy; on the basis of w, (via wg,) and 7, according to an
approximate relation given by the quartic equation (wg;/wp1)* — (wo1/wh1)3 —

(wo1/wh1) (wh1T1)™* — (whyT1) ™2 = 0. See text for further details.

Overall, it can be seen in Figure 6.3 that in the frequency range 0 < w < wy; the
impedance |Z; (w)| was practically determined by the resistance R, (w). The resistance
R,(w) itself, according to Equation 6.13, decreases from R;(w) =~ k! at low
frequencies to R, (w) = t1/k, 7 at high frequencies. Meanwhile, according to Equation
6.14, the reactance Y; (w), increasing from zero, takes positive values at low frequencies,
passes via a maximum and then a zero value, and finally changes as Y;(w) =
—wti/k; (1 — w?/w?) at high frequencies w > 77! (for example, in the f.c.c. Cu, 7;*
was approximately 6.4 THz at 400 K (see Table 6.1 for further details)). In this context,

it can be noted that in the case if R, (w) were constant, i.e., independent of the frequency,
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|Z; (w)| would have a minimum exactly at the frequency where Y; (w) passes via a zero

value. Let us denote this frequency as wg,. This frequency can be readily found from

Equation 6.14 as Y;(w);) = 0, S0 that it is wj; = wey/1 — (weT1)72. In this study,
however, R, (w) decreased with a frequency which resulted in the minimum of |Z; (w)|
shifting towards a higher frequency wq; > wg,. For example, in this case R, (wg,) =
2 11 /k, 7, took a value which was two times higher than its high-frequency limit. Thus,
if the difference between wy; and wy, is relatively small, one may use the expansion of
Y: (w) to first order in (w — wg,) inside the frequency range between wg; and wy; to
derive an approximate relation for w,; and w. (viawg,). Indeed, noticing from
Equations 6.13 and 6.14 a useful relation for R, (w) and Y; (w) of the form R, (w) =
Ri(wg,) + Y1 (w)/wty, One may employ the following approximations Y;(w) =
—Ry(wg1) (W1 /w)* (@ — wo)Ty  and  Ry(w) = Ry (wg1) (@o1/wc)? (o1 /w —
(wpyT1)72%) inside the frequency range between wg, and wqy;. Then, using these
approximations for R, (w) and Y; (w) in setting the derivative of | Z, (w)| at zero for w =
wo1, ONe can readily obtain the following quartic equation for the ratio wq,/wg,; > 1:
(wo1/wp1)* = (Wo1/wp1)* = (Wo1/wo1) (Wo171)™* = (wp171) 72 = 0. Figure 6.4,
along with w,, wg, wg1, and wgyq, also show the temperature dependence of wg,, as well
as of wgyq, found as a numerical solution of the quartic equation (this study is not
concerned with an analytical solution of the quartic equation). It can be seen in Figure
6.4, which as the temperature increases, the difference between wy; and wgy, also
increases. For example, in the f.c.c. Cu, their ratio wy, /wg, Was approximately 1.13 and
1.34 at 40 and 400 K, respectively (see Table 6.1 for further details). As a result, the wq,
estimated from the quartic equation gave excellent agreement with the actual value of
Wy, Up to the temperatures slightly above the Debye temperature, while such an
estimation becomes much less reliable as the temperature approaches the melting
temperature.

With increasing frequency atw > w. ~ wy;, the ability of the acoustic
short-range phonon modes to be scattered for the time of approximately =/w gradually
decreased. As a result, at high frequencies, the response |Z; (w)|~! becomes mainly
dominated by the reactance Y; (w). It was noted, for example, that at frequencies close
to the Debye frequency the ratio |Y; (w)|/R;(w), in f.c.c. Cu, can be roughly estimated
as approximately 5 and 3.5 at 400 and 1300 K respectively (see Table 6.1 for further

details).
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Table 6.1: 731, 771, @01 oy I”l(w)l/R1 (@) Of f-c.C. (2) Cu, (b) Al, () Nicams, (d) Nicave

and (e) Ag models at some temperatures. All quantities presented in this table are introduced in

the text (see Figures 6.1— 6.4 for further details).

Metals Temperature 7,1 (THz) 171(THz2) Z))—[,: %
40 1.13
cu 400 0.6 6.4 1.34 5.0
1200 2.7
1300 11.8 3.5
100 1.06
Al 500 1.0 8.3 1.28 6.0
1000 3.2 12.6 2.32 4.0
100 1.15
Nieam1 500 0.5 7.6 1.34 7.0
1700 2.14 15.8 3.8
100 1.14
Nieam2 500 0.3 6.0 1.19 8.5
1700 2.2 11.2 3.06 5.0
40 111
Ag 300 0.5 4.6 1.31 6.0
1100 2.0 8.8 3.0

Thus, this analysis shows that in a monatomic lattice, especially at sufficiently low
temperatures, there might be a frequency “window” 7;! < w « w, for an external
periodic temperature perturbation to create a response state in which: (i) the acoustic
short-range phonon modes have always enough time to be equilibrated with respect to
the lattice; while (ii) the acoustic long-range phonon modes are expected to be
equilibrated with respect to each other but do not have enough time to be equilibrated
with respect to the lattice. As a result, such an external periodic temperature perturbation
can result in thermal waves (so called second sound [87, 88]) being propagated in the
lattice via the acoustic long-range phonon modes.

Lastly, by using Equations 6.10 and 6.24, the power spectrum S;(w) of the
fluctuations of the total heat flux J(t) and the total impedance |Z(w)| can be readily

represented via S (w) and S, (w), and via |Z;(w)| and |Z,(w)], respectively, as
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Sj(w) = 5, (w) Ry(w)/R(w) + S),(w) Ry (w)/R(w) and 1Z(w)|7% =
|Z;(@)]7? Ry (w)/R(w) + |Z,(w)| 7% Ry(w)/R(w), or, alternatively, as S;(w) =
5, (@) Y1(@)/Y (w) + §), (w) Yo () /Y (@) and |Z(w)|7? = |Z1(0) |72 V1 () /Y (@) +
|Z,(w)|7? Y,(w)/Y (w). As aresult, it can be seen in Figures 6.2 and 6.3 that S; (w) and
|Z(w)| represent some appropriately weighted combinations of the features discussed
above of 5; (w) and S}, (w), and |Z; (w)| and |Z, (w)], respectively. Meanwhile, Figure
6.5 shows the spectra of the power dissipation for the equilibrium thermal fluctuations
for the MD models of f.c.c. Cu, Al, Nieam1, Nieam2 and Ag. According to Equations 6.23
and 6.24, this spectrum Spoyer(w) can be defined by the product of S;(w) and Sy (w)

3V
ZﬂkBT

as Spower(W) = S;(w)Sx(w). The spectra S;(w) and Spower(w) can, in principle,

be obtained experimentally by scattering and absorption measurements. Thus, the
considered spectral representation of the analytical model for the HCACF given by
Equation 5.1 (page 81) could be used in the future for the interpretation of spectroscopic
measurements of phonon dynamics if a proper resolution of the frequency range of

approximately 1 — 20 THz is routinely accessible.
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Figure 6.5: Spectra of the power dissipation Spower(w)=%sj(w)5)((w) for the

equilibrium thermal fluctuations at different temperatures above Ty, for the MD models of f.c.c.
(@) Cu, (b) Al, (c) Nigams, (d) Nieam2 and (e) Ag predicted on the basis of the analytical model

for the heat current autocorrelation function given by Equation 5.1.
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Overall, it should be noted that despite having principally restricted the present
work to an investigation of the lattice thermal resistance of a cubic (isotropic case)
Bravais lattice, using MD models of f.c.c. Cu, Al, Nieam1, Nieam2 and Ag as case studies,
the results are not difficult to generalize for other (anisotropic) Bravais lattices in the
future, as well as for non-Bravais lattices which also permit optical phonon modes.
Furthermore, along with the phonon-phonon interactions, other phonon scattering
processes can be included in the considerations. In addition, aside from the steady state
Boltzmann equation in the presence of a constant temperature gradient considered (see
Chapter 8), the study results in the spectral representation of the heat flux fluctuations
in thermal equilibrium to be effectively used to formulate a generalized Boltzmann
equation valid for the applied thermal disturbance of an arbitrary finite frequency. In
particular, the fundamental understanding of thermal transport on periodic temperature
perturbations is of great interest in the intelligent development of electronic devices
operating at high frequencies.
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Chapter 7: Links to the Experimental Data and
Assessment of the Scaling Relations of the Lattice

Thermal Conductivity

Figure 7.1 compares the results for the lattice thermal conductivity of the MD models of
f.c.c. Cu, Al, Nigami, Nieam2 and Ag with a compilation [11] of experimental
measurements of the thermal conductivity over wide temperature ranges (see Table 3.1),
which obviously also includes contributions due to the electron-phonon and phonon-
electron scattering processes. Since some confusion may arise here, it is apposite to
recall that the quantity calculated in this work is actually the component of the lattice
thermal conductivity, kp,_pn, determined by the phonon-phonon scattering processes.
As a first approximation, one may estimate the contributions, kej_pn = ke and kpp—e,
due to the electron-phonon and phonon-electron scattering to the total thermal
conductivity of the MD models of f.c.c. Cu, Al, Nieam1, Nieam2 and Ag by using a
simplified model of the electron-phonon interactions in a metal [17, 21, 25] along with
this study’s data for kp,_pn and the experimental data [11] for k. Besides ignoring the
effects of the electron-electron scattering, the main simplifications used in the model to
evaluate kej_pn and kpp_e include [17, 21, 25]: spherical Fermi surface, electron-
phonon scattering N-processes only, Thomas-Fermi approximation, etc. Thus, one may

employ the following relation [17, 21, 25]:

- _ -1
k = kel—ph + (kpl}—ph + kpﬁ—el) ’ (7-1)

with kej_pn and ke given by [17] (for more details, see also [14, 21, 89, 90])

, T,
it = () @) 2@ @) - L] o
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k—l

T,
A m*n} (TD)Z Js (TD)
ph—el = | T 27 R

- e (7.3)
s ()]

where A is a constant which represents the strength of the electron-phonon interactions,

L, = 2.445 WQK™ is the ideal Lorenz number, n, is the number of free electrons per

atom, and J,, (T?D) is given by:

Jn (—) = ﬂdx. (7.4)

First, it should be noted, as can be seen in Figures 7.1(c1 and 7.1(dy), that the total
thermal conductivity of f.c.c. Nieam1 and Nieamz above the Curie temperature®® 628 K
increased with temperature. In this context, it was noted in [89] that it would seem that
abnormal complications are present with the electronic contribution to the thermal
conductivity of nickel above the magnetic transformation point. For this reason, this
study limits itself to a consideration of only the temperature range of 100 — 600 K (see
Figures 7.1(cy and 7.1(d1)). Next, it is known [21] that various experiments indicate that
the number of free electrons per atom of Ni is n, = 0.54. Then it is straightforward to
show that Equation 7.1 can be rearranged to obtain a quadratic equation for the

ratio kpp—ph/kph-el, aS:

2
(kph—ph> n <1 _ kph—ph _ kph—ph kel—ph> kph—ph _ kph—ph kel—ph ~0 (7 5)
kph—el k k kph—el kph—el k kph—el

%5 The Curie temperature is a critical temperature for a ferromagnetic material above which this temperature
ferromagnetic material becomes paramagnetic.
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Hence, a meaningful positive-root solution of the quadratic equation for the ratio

koh—-ph/kph-e1 Can be readily found as:

kon— 1 (kpn—pn kel— kon—
ph—ph ph—ph *el-ph ph—-ph —
kph—el 2 ( k kph—el k

where:

2
D= <1 _ kph—ph _ kph—ph kel—ph) 14 kph—ph kel—ph

> 0. 7.7
KTk Fona K Kpna 77

Finally, by evaluating numerically the ratio kej_pn/kpn-el from Equations 7.2 - 7.4 (n,
is approximately 1, 3, 0.54, 0.54 and 1, for the MD models of f.c.c. Cu, Al, Nieamz,
Nieam2 and Ag, respectively), as well as the ratio ky,_pn/k, from the data for kyp_pp
and the experimental data [11] for k, the temperature dependence of the ratio

koh-ph/kpn-e1 and, consequently, the temperature dependences of kpp,_e, kej—ph, and

kon = kph_ph(l + kph_ph/kph_el)_1 can be estimated in a wide temperature range.

Thus, the estimations for the temperature dependences of kpp,_el, Kei—ph, and kpp
are shown in Figures 7.1(a1), 7.1(b1), 7.1(c1), 7.1 (d1) and 7.1(e1) for the MD models of
f.c.c. Cu, Al, Nigam1, Nieamz and Ag, respectively, along with the study’s data for k,_pp
and the experimental data [11] for k. It can be seen in Figure 7.1 (a1, by, c1, di and e1)
that the electronic contribution k¢ (= kej-pn) to the total thermal conductivity of the

MD models of f.c.c. Cu, Al, Nigam1, Nieam2 and Ag dominated the considered
temperature ranges. Nonetheless, the phonon thermal conductivity of the MD models of

f.c.c. Cu, Al, Nieami, Nieam2 and Ag increased as the temperature decreased.
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Furthermore, kpn_ph and kpp_e) were calculated for a high temperature range (T >>

Tp) that kej_pp and kpp_e; for high temperature limits are given by:

A /TN\* [T
-1 _ D
A (T T m?n2
-1 _ D D e
Kph-e1 = LoTp ( T )1 > ( T ) (7.9

B

. Tp 1(Tp\* .
that at high temperatures (T > Tp), Js (?) =3 (T) , S0 that Equations 7.8 and 7.9 can

be rearranged as:

1 A
Kel—ph = ATy (7.10)
e oA e 711
h—el — LOTD 12 . ( . )

Figure 7.1(a1) shows that the phonon thermal conductivity of f.c.c. Cu increased
as the temperature decreased down to 90 K. In addition, it can be seen in Figure 7.1(az2)
that the phonon contribution k, to the total thermal conductivity of f.c.c. Cu can be
estimated as approximately 0.5 % at 1300 K (assuming kp}, = kph—ph at T >> Tp), and
approximately 7 % at 90 K. Also, it was noted that the use of kpy_p, instead of k, led
to an overestimation of the phonon contribution to the total thermal conductivity by
approximately 0.1% and 3% at 1200 and 90 K respectively (see Figure 7.1(az2)). Figure
7.1 shows that the phonon thermal conductivity of f.c.c. Al increased as the temperature

decreased down to 100 K. Moreover, it can be seen in Figure 7.1(by) that the phonon
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contribution ky;, to the total thermal conductivity of f.c.c. Al can be estimated as
approximately 1% at 1000 K (assuming kp, = kpp—ph at T >> Tp), and approximately
8% at 100 K. Also, it was noted that the use of kpp_p;, instead of ky;, led to an
overestimation of the phonon contribution to the total thermal conductivity by
approximately 0.3% and 4% at 1000 and 100 K, respectively (see Figure 7.1(b2)). In
f.c.c. Nieam1 and Nieamz, the phonon thermal conductivity contribution to the total
thermal conductivity had a maximum at 200 K and started to decrease at 100 K (see
Figures 7.1(c1) and 7.1(d1)). In addition, it can be seen in Figures 7.1(c2) and 7.1(d.) that
the phonon contribution k), to the total thermal conductivity of the MD models of f.c.c.
Nieam1 and Nieam2 can be estimated as approximately 4% and 4% at 1500 K (assuming
kon = kpnh—pn at T >> Tp), approximately 14.4% and 20.7% at 600 K, approximately
16.8% and 34.1% at 200 K, and approximately 15.6% and 30% at 100 K, respectively.
Also, it was noted that the use of kpp,_p;, instead of kp;, led to an overestimation of the
phonon contribution to the total thermal conductivity of f.c.c. Nieam1 by approximately
3%, 4% and 7 % at 600, 200 and 100 K, respectively (see Figure 7.1(cz2)), and this
contribution for f.c.c. Nieam2 is about 3%, 8.3%, 40.5% and 73% at 1400, 600, 200 and
100 K, respectively (see Figure 7.1(d2)). Figure 7.1(e1) also showed that the phonon
thermal conductivity of f.c.c. Ag increased as the temperature decreased down to 60 K.
Furthermore, it can be seen in Figure 7.1(e2) that the phonon contribution k, to the total
thermal conductivity of f.c.c. Ag can be estimated as approximately 0.2% at 1200 K
(assuming kpp, = kph-ph at T >> Tp), and approximately 4% at 60 K. Also, it was noted
that the use of k,,_pp, instead of kp;, led to an overestimation of the phonon contribution
to the total thermal conductivity by approximately 0.04% and 0.6% at 1200 and 60 K,

respectively (see Figure 7.1(e2)).
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Figure 7.1: (a1), (ba), (c1), (d1) and (e1) show the decomposition of the total thermal conductivity,
k (solid circles), of the MD models of f.c.c. Cu, Al, Nigam1, Nieam2 and Ag [11], respectively,
into the electronic, ke (upward facing open triangles), and phonon, kpy, (solid diamonds),
components. This decomposition is based on: (i) the relation k = k¢ + kpy; (ii) the calculations
of the phonon thermal conductivity, k,,_pn (0pen squares), limited by the phonon scattering;
and (iii) a simplified model of electron-phonon scattering in a metal [14, 17, 21] (see text for
details). As a result, it is assumed that ke ~ kei—pn and kpn = (kpp_pn + klgl}_el)_l, where
kei—pn 1s the electron thermal conductivity limited by the phonon scattering, while kpp_e;
(downward facing open triangles) is the phonon thermal conductivity limited by the electron
scattering. (a2), (b2), (c2), (d2) and (e2) estimate the relative contribution of the phonon
component to the total thermal conductivity of the MD models of f.c.c. Cu, Al, Nieam1, Nieam2
and Ag, respectively. Solid diamonds and open squares show the ratios kpp,/k and kpp_pn/k,

respectively.

It is very rarely possible to separate the electronic and lattice contributions in an

experiment [17]. It is only in some special cases of extrinsic conductors, such as CdzAs,
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that the electronic and lattice contributions can be separated by measuring the magnetic-
field dependence of the thermal conductivity [22]. Nonetheless, a general fundamental
understanding of the factors affecting the electronic and lattice contributions to the
thermal conductivity is highly desirable for the development of advanced energy
conversion devices that utilise the thermoelectric effect [25]. In particular, it is known
[25] that, besides a large value of the Seebeck coefficient, combinations of a low thermal
conductivity with large electrical conductivity are required to achieve large values of the
figure of merit for the thermoelectric performance of a material. It is also known [17]
that at a given temperature, the electronic thermal conductivity of different crystals is
supposed to scale approximately linearly with the electrical conductivity of the crystals,
according to the Wiedemann-Franz law. In other words, this means that a low value of
the lattice thermal conductivity is highly desirable to enhance the figure of merit of a
thermoelectric crystal. Therefore, besides the spectral representation of the lattice
thermal conductivity, which was discussed in the previous section, and which has the
potential to be used in the future to enable direct spectroscopic measurements of the
lattice thermal conductivity, it is also of great interest for the intelligent development of
thermoelectric crystals to have simple scaling relations between the lattice thermal
conductivity and other lattice properties readily accessible in the experiment, such as
thermal expansion and elasticity.

In this context, it should be noted that MD simulations, in conjunction with the
EAM potentials, present a unique opportunity for this type of study. Indeed, a
fundamental understanding of the influence of other lattice properties on the lattice
thermal conductivity can be achieved by a systematic MD study of a set of high quality
models of isostructural crystals (i.e., crystals which have the same structure but different
lattice properties). In particular, this study considered the scaling relations of the lattice
thermal conductivity with the coefficient of thermal expansion and the bulk modulus
estimated by using the MD models of f.c.c. Cu, Al, Nieam1, Nieam2 and Ag. It should be
highlighted here that one of the main advantages of an EAM potential model, compared
to a pair potential model, is the ability to reproduce the elastic anisotropy of a cubic
lattice (which results in the three independent elastic moduli) that is one of its well-
known generic features [40]. Therefore, as long as a potential model is able to reproduce
the fundamental features of a lattice, and all considered lattice properties are calculated
for the same potential model, it is not even so important to study the scaling relations
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between the lattice properties or how close the considered model can reproduce the
actual experimental data for a particular real crystal with the lattice. Indeed, this means
that even different EAM models of the same real cubic crystal, which predict slightly
different lattice properties of the crystal, can in principle be used for the general study
of the scaling relations between the lattice properties of the cubic crystals with the lattice
considered. Nonetheless, it should be underlined again that the fitting databases of the
employed EAM potentials contained a very extensive set of relevant experimental and
first-principles data which guarantee an adequate accounting of the anharmonic effects
in the lattice properties of the models of f.c.c. Cu, Al, Nieamz1, Nieam2 and Ag considered
here [5-7]. Despite the cubic crystals presenting the isotropic case for the lattice thermal
conductivity, this study is a good starting point to gain an initial understanding of the
scaling relations. Later, it has the potential to be extended to non-cubic crystals to

account for the anisotropy of the lattice thermal conductivity.

In this section, estimations are also given of the simple scaling relations between
the lattice thermal conductivity and other lattice properties readily accessible in the
experiments, such as the thermal expansion and elasticity. As mentioned in Chapter 1,
such simple scaling relations would be of great interest for the intelligent development
of thermoelectric crystals. Thus, Table 6.1 shows the lattice thermal conductivity, the
coefficient of thermal expansion and the bulk modulus calculated for the MD models of
f.c.c. Cu, Al, Nieawm1, Nieam2 and Ag at the three temperatures 500, 700 and 900 K (the
chosen temperatures are confined between the Debye and melting temperatures for all
the metals, so that we again assume kpp, ~ kyh-pn). Table 7.1 also shows in brackets the
available experimental data: (i) for the coefficient of the thermal expansion of Cu, Al,
Ni and Ag [90], and (ii) for the bulk modulus of Cu [91], Al [92], Ni [93] and Ag [91].
The coefficient of thermal expansion ap was calculated by using the temperature
dependence of the atomic volume at zero pressure P = 0 (see Figure 3.1 and Equation
3.5 for the MD models of f.c.c. Cu, Al, Nieam1, Nieamz and Ag), and the parameters of

Equation 3.5 are: Q,, ag and S (see Table 3.2) according to the relation:

(a—V)P. (7.11)
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Meanwhile, the isothermal bulk modulus By was calculated according to the relation:

By = — <Z_§>T' (7.12)

For each temperature considered, this was done by using a linear approximation of the
pressure of the system at five different volumes in the direct vicinity of the respective

zero-pressure volume.

Table 7.1: Lattice properties of the f.c.c. Cu, Al, Ni and Ag models at 500, 700 and 900 K (k is
the lattice thermal conductivity, ap is the coefficient of the thermal expansion, and By is the
isothermal bulk modulus). The available experimental data are shown in brackets: (i) Ref. 90 for
the coefficients of the thermal expansion of Cu, Al, Ni and Ag, and (ii) Refs. 91, 92, 93 and 91
for the bulk moduli of Cu, Al, Ni and Ag, respectively.

k (W/mK) ap (10° K1) B (GPa)
Temperature

(K)

Cu Ni Al Ag Cu Ni Al Ag Cu Ni Al Ag

5.29 3.32 5.34 6.69 127.26 212.21 76.13 95.09

500 622 1292 550 205 oun  us6) (785) (618) (12610) (179.21)  (7201)  (99)

5.76 3.50 6.22 7.09 121.03 207.16 70.57 88.459
700 382 896 323 145 ga1y  (489) (917) (678) (L18.06) (173.61) (67.69)  (94)

6.21 3.68 7.07 7.47 114.70 199.79 63.61 80.59

900 289 116219 118 (g (508) (1046) (744) () O ©28) ()

Figures 7.2(a) and 7.2(b) show, in double-logarithmic coordinates, the ratio of the
lattice thermal conductivities kpp(M)/kpn(Cu) as a function of the ratio of the
coefficients of thermal expansion ap(M)/ap(Cu) and the ratio of the isothermal bulk
moduli B;(M)/Br(Cu), respectively, calculated for the MD models of f.c.c. Cu, Al,
Nieamz, Nieam2 and Ag at the three temperatures 500, 700 and 900 K (M denotes Cu,
Al, Nieamz, Nieam2 or Ag). By analysing the slopes of the linear fits of the data in Figure
7.2, it can be roughly estimated that at a given temperature the lattice thermal

conductivity approximately scales as k,, < ap? and k,, o Br. In addition, it can be
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seen in Figure 7.2 that in both cases the absolute value of the scaling power changes
with temperature only very slightly. This study presents the data for five models so that
the scaling relations across a sufficiently large number of MD models of different f.c.c.
metals can be investigated. As a result, it can be noted that the lattice component of the
thermal conductivity should be smaller in isostructural materials with a higher value of
the coefficient of thermal expansion and a lower value of the bulk modulus.
Furthermore, one may expect that in materials which exhibit anisotropic lattice
properties, the lattice component of the thermal conductivity should be smaller in that
direction which has a higher value of the coefficient of thermal expansion and a lower
value of the elastic modulus.
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Figure 7.2: Double-logarithmic plot for the scaling relations of the lattice thermal conductivity
k,n with (a) the coefficient of the thermal expansion ap and (b) the isothermal bulk modulus By
Plots show the ratio of the lattice thermal conductivities k,,,(M)/k,,(Cu) as a function of (a)
the ratio of the coefficients of the thermal expansion ap(M)/ap(Cu) and (b) the ratio of the
isothermal bulk moduli B;-(M)/B+(Cu) calculated for the f.c.c. Cu, Al, Nigam1, Nieam2 and Ag
models at 500, 700 and 900 K (M denotes Cu, Al, Nigawm1, Nieamz and Ag). The symbols show
the calculated data (data for Cu, Al, Nigam1, Nieamz and Ag are marked as 1, 2, 3, 4 and 5,
respectively) while the lines show the linear fit of the data. The small symbols and solid lines
represent data at 500 K, the medium symbols and dashed lines represent data at 700 K, and the

large symbols and dotted lines represent data at 900 K.
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Chapter 8: Conclusions and Recommendations for

Future Research

8.1 Conclusions

In this work, equilibrium molecular dynamics simulations, in conjunction with the
Green-Kubo formalism, provided an effective basis to explore the thermal resistance of
a crystal lattice with a monatomic unit cell due to phonon-phonon scattering processes.
The key role of the equilibrium molecular dynamics simulations is the ability to give
unique and direct access to the HCACF, which has been shown for a monatomic lattice,
to reveal a consistent two-stage decay. Furthermore, this study has shown that the two-
stage decay can be universally modelled by an analytical expression which provides an
exceptional basis for the development of a general analytical treatment of the lattice
thermal conductivity. The main results of the present study that originated from the

treatment are briefly summarized below:

(i) It was found that the HCACFs of f.c.c. Cu, Al, Nieam1, Nieam2 and Ag, as
five case studies, exhibited a two-stage temporal decay which can be
nicely modelled by the analytical function given by Equation 5.1 (page
81). Namely, an initial rapid decay of the HCACF was followed by a peak
in the low temperature range and the intensity of the peak decreased as the
temperature increased. It transformed to a shoulder which diminished
almost entirely at high temperatures. Thus, only at very high temperatures,
the first stage decay of the HCACF was visually and directly followed by
a longer second stage decay in accordance with the results reported in [1,
2] for the HCACEF of the f.c.c. Ar model. It has been demonstrated that the
lattice thermal conductivity of a monatomic lattice can be decomposed
into two contributions due to the acoustic short- and long-range phonon
modes. Moreover, it has transpired that it is possible to present these two
contributions in the form of simple kinetic formulas, consisting of the
products of the heat capacity, the square of the average phonon velocity
and the average relaxation time of the acoustic short- and long-range
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(ii)

(iii)

(iv)

(v)

(vi)

phonon modes, respectively. In addition, all these quantities have been
numerically evaluated in a self-consistent manner from the HCACF.

A HCACF decomposition model was introduced (see Equation 5.1 (page
81)), that can capture all the contributions to the HCACF of a monatomic
f.c.c. lattice that were discussed in the literature. In the framework of this
model, it has been demonstrated that despite the freezing out of the high
frequency phonon modes at temperatures below the Debye temperature, a
classical description of the thermal transport properties can be used down
to around one quarter of the Debye temperature. This is because the
acoustic long-range phonons, which are the main heat carriers responsible
for the phonon thermal transport at low temperatures, are active down to
around one quarter of the Debye temperature, and only at lower
temperatures do they start to freeze out.

An analytical treatment of the decomposition of the lattice thermal
conductivity allowed for a numerical evaluation of the relaxation times
and the partial heat capacity of the acoustic short- and long-range phonon
modes from the HCACF extracted from the MD simulations at high
temperatures T > Tp.

It has been demonstrated that the average phonon velocities of the acoustic
short- and long-range phonon modes should be equal to each other and
can be evaluated via the second-order fluctuations of the heat current
vector.

An extensive analysis of the spectral representation of the calculated
HCACF has been carried out. In particular, the power spectra associated
with the heat flux fluctuations in thermal equilibrium were predicted and
investigated in detail. The power spectra have the potential to be measured
in the future by various spectroscopic techniques. Thus, this has allowed
for a potential connection between the study’s model predictions and
experiments

Within the framework of a simplified model of the electron-phonon
interactions in a metal [14, 17, 21], a comparison of the results was
performed for the component of the lattice thermal conductivity, kp,_pn,

of the MD models of f.c.c. Cu, Al, Nieam1, Nieam2 and Ag determined by
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(vii)

the phonon-phonon scattering processes with the experimental
measurements of the thermal conductivity [11]. It has been demonstrated
that: (i) the electronic contribution ke; (= kej—pn) to the total thermal
conductivity dominated the considered temperature range; (ii) the phonon
thermal conductivity, k,},, increased as the temperature decreased; (iii) the
use of kpn_pn instead of kpy led to an overestimation of the phonon
contribution to the total thermal conductivity.

The scaling relations of the lattice thermal conductivity with the
coefficient of thermal expansion and the bulk modulus have been
estimated. As a result, at a given temperature the lattice thermal
conductivity scales approximately with the inverse second power of the
coefficient of the thermal expansion and are roughly proportional to the

bulk modulus.

8.2 Future Research

The following suggestion can be defined for future research:

(i)

(i)

(iii)

In this research, the simulations were performed within the framework of
equilibrium MD simulations in conjunction with the Green-Kubo
formalism. For this purpose, only five first-principles-based many body
potential within the framework of the EAM developed by Mishin et al.
were used. Generally, this analysis could be extended by employing other
existing and new interatomic potentials, so that more MD models can be
investigated.

As discussed here, equilibrium MD simulations, along with the
Green-Kubo formalism, are an effective method to estimate thermal
conductivity and to also calculate the phonon transport properties of
materials. Also, ab initio MD simulations have become popular in recent
years. Consequently, combining the Green-Kubo method with ab initio
MD simulations might be an interesting and fruitful topic for future work.
This thesis focused on monoatomic f.c.c. crystals. Moreover, some alloys

exhibit excellent high-temperature physical and mechanical properties.
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(iv)

(viii)

(ix)

The techniques developed here can be used in future work for the
investigation of the thermal transport properties of alloys.

The investigation of scaling relations between the lattice thermal
conductivity and other lattice properties can be extended by including the
data for models of other metals with different crystal lattices.

As shown, the thermal conductivity can be expressed as the sum of two
main contributions, one due to the electronic states and the other due to
the lattice vibrations. It is normally quite difficult to separate these two
contributions directly in an experimental situation. Simulation and
experimental work are also important as the simulations provide insight
into the nature of the physical phenomena and the experiment makes no
assumptions. Furthermore, in this research, the power spectra have been
developed. Accordingly, future work can focus on the power spectra that
are expected to be accessible for measurements by various spectroscopic
techniques. Thus, it can be a potential connection between the theoretical
description and experiment.

Phononics, like electronics and photonics, is a young branch of physics
that is concerned with the behaviour of sound and heat. Understanding
how to control sound waves and heat vibrations in materials provides
opportunities to develop new ideas and devices for transforming waste

heat into electricity.
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